degruyter.com uses cookies to store information that enables us to optimize our website and make browsing more comfortable for you. To learn more about the use of cookies, please read our Privacy Policy. OK

Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data

Zhu Wang 1  and C.Y. Wang 2
  • 1 Yale University
  • 2 Fred Hutchinson Cancer Research Center

There has been increasing interest in predicting patients' survival after therapy by investigating gene expression microarray data. In the regression and classification models with high-dimensional genomic data, boosting has been successfully applied to build accurate predictive models and conduct variable selection simultaneously. We propose the Buckley-James boosting for the semiparametric accelerated failure time models with right censored survival data, which can be used to predict survival of future patients using the high-dimensional genomic data. In the spirit of adaptive LASSO, twin boosting is also incorporated to fit more sparse models. The proposed methods have a unified approach to fit linear models, non-linear effects models with possible interactions. The methods can perform variable selection and parameter estimation simultaneously. The proposed methods are evaluated by simulations and applied to a recent microarray gene expression data set for patients with diffuse large B-cell lymphoma under the current gold standard therapy.

    • bujar_0.1.tar.gz
    • supp.pdf
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

SAGMB publishes significant research on the application of statistical ideas to problems arising from computational biology. The range of topics includes linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarrary data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies.

Search