Application of poly (N-phenylethanolamine) modified MWCNTs as a new sorbent for solid-phase extraction of trace palladium ions in soil and water samples

Mohammad Behbahani 1 , Akbar Bagheri 1 , Tayebeh Gorji 2 , Mohammad Reza Nabid 1 , Roya Sedghi 1 , 3 , Hossein Abdi Oskooie 3 , and Majid M. Heravi 3
  • 1 Department of Chemistry, Shahid Beheshti University, G.C, 1983963113, Tehran, Iran
  • 2 Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran
  • 3 Department of Chemistry, School of Science, Azzahra University, Vanak, Tehran, Iran

Abstract

This paper describes, a new, sensitive, and low cost solid-phase extraction (SPE) method using a poly(N-phenylethanolamine) /multi-walled carbon nanotubes (MWCNTs) nanocomposite for extraction, pre-concentration, and flame atomic absorption spectrometric (FAAS) determination of trace level palladium in distilled water, tap water, Caspian sea water, Persian Gulf water, spring water, lake water and soil samples, as well as real samples. The poly(N-phenylethanolamine)/MWCNTs nanocomposite were characterized using Fourier Transform-infrared (FT-IR) spectroscopy, thermo-gravimetric analysis (TGA) and scanning electron microscopy (SEM). Factors affecting the pre-concentration of palladium, including sample pH, flow rate, and type and volume of eluent, were investigated. The effect of interfering ions and break through volume on the separation and determination of palladium ions was also determined. The maximum sorbent capacity of the poly (N-phenylethanolamine)/MWCNTs nanocomposite was calculated to be 101.5 mg g−1. The pre-concentration factor, relative standard deviation, and limit of detection of the method were found to be 150, 2.8% (n=10), and 0.09 ng mL−1, respectively. The presented method was compared to certified reference materials, and finally, the presented technique was applied to different matrices spiked with 5 ng mL−1 of analyte.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Zereini, F.; Alt, F. Palladium Emission in the Environment, Springer-Verlag: Berlin. Heidelberg, 2006.

  • [2] Edmiston, C.; Goheen, M.P.; Seabrook, G.R.; Johnson Ch.; Lewis B.; Brown K.R.; Towne, J.B. Impact of selective antimicrobial agents on staphylococcal adherence to biomedical devices. Am. J. Surg., 2006, 192, 344-354.

  • [3] Zhu, Y.; Khan, Z.; Masel, R.I. The behavior of palladium catalysts in direct formic acid fuel cells. J. Power Sources, 2005, 139, 15-20.

  • [4] Hooda, P.S.; Miller, A.; Edwards, A.C. The distribution of automobile catalysts cast platinum, palladium and rhodium in soils adjacent to roads and their uptake by grass. Sci. Total Environ., 2007, 374, 384-392.

  • [5] Sures, B.; Zimmermann, S. Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissenapolymorpha. Environ. Pollut., 2007, 146, 444-451.

  • [6] Shemirani, F.; RahnamaKozani, R.; Jamali, M.R.; Assadi, Y.; MilaniHosseini, M.R. Cloud point extraction, preconcentration, and spectrophotometric determination of palladium in water samples. Int. J. Environ. Anal. Chem., 2006, 86, 1105-1112.

  • [7] Wataha, J.C.; Hanks, C.T. Biological effects of palladium and risk of using palladium in dental casting alloys. J. Oral. Rehabil, 1996, 23, 309-320.

  • [8] Tokalioglul, S.; Yılmaz, V.; Kartal, S.; Delibas, A.; Soykan, C. Solid phase extraction of Pd(II) on a newly synthesized chelating resin prior to determination by flame atomic absorption spectrometry. Microchim. Acta, 2009, 165, 347-352.

  • [9] Jamali, M.R.; Assadi, Y.; Shemirani, F.; Salavati-Niasari, M. Application of thiophene-2- carbaldehyde-modified mesoporous silica as a new sorbent for separation and preconcentration of palladium prior to inductively coupled plasma atomic emission spectrometric determination. Talanta, 2007, 71, 1524-1529.

  • [10] Mohamadi, M.; Mostafavi, A. A novel solidified floating organic drop microextraction based on ultrasound-dispersion for separation and preconcentration of palladium in aqueous samples. Talanta, 2010, 81, 309-313.

  • [11] Soylak, M.; Tuzen, M. Coprecipitation of gold(III), palladium(II) and lead(II) for their flame atomic absorption spectrometric determinations. J. Hazard. Mater., 2008, 152, 656-661.

  • [12] Oguri, K.; Shimoda, G.; Tatsumi, Y. Quantitative determination of gold and the platinum group elements in geological samples using improved NiS fire-assay and tellurium coprecipitation with inductively coupled plasmamass spectrometry (ICPMS). Chem. Geol, 1999, 157, 189- 197.

  • [13] Pearson, D.G.; Woodland, S.J. Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re–Os isotopes in geological samples by isotope dilution ICP-MS. Chem. Geol, 2000, 165, 87-107.

  • [14] Igarashi, Sh.; Ide, N.; Takagai, Y. High-performance liquid chromatographic– spectrophotometric determination of copper(II) and palladium(II) with 5,10,15,20-tetrakis(4 Npyridyl) porphine following homogeneous liquid–liquid extraction in the water– acetic acid– chloroform ternary solvent system. Anal. Chim. Acta, 2000, 424, 263-269.

  • [15] Bagheri, A.; Behbahani, M.; Amini, M.M.; Sadeghi, O.; Taghizade, M.; Baghayi, L.; Salarian, M. Simultaneous separation and determination of trace amounts of Cd(II) and Cu(II) in environmental samples using novel diphenylcarbazide modified nanoporous silica. Talanta, 2012, 89, 455-461.

  • [16] Behbahani, M.; Salarian, M.; Amini, M.M.; Sadeghi, O.; Bagheri, A.; Bagheri, S. Application of a New Functionalized Nanoporous Silica for Simultaneous Trace Separation and Determination of Cd(II), Cu(II), Ni(II), and Pb(II) in Food and Agricultural Products. Food Anal. Methods. DOI 10.1007/ s12161-012-9545-9.

  • [17] Bagheri, A.; Behbahani, M.; Amini, M.M.; Sadeghi, O.; Tootoonchi, A.; Dahaghin, Z. Preconcentration and separation of ultra-trace palladium ion using pyridine-functionalized magnetic nanoparticles, Microchim. Acta., 2012, 178, 261– 268.

  • [18] Bagheri, A.; Taghizadeh, M.; Behbahani, M.; Asgharinezhad, A.A.; Salarian, M.; Dehghani, A.; Ebrahimzadeh, H.; Amini, M.M. Synthesis and characterization of magnetic metal-organic framework (MOF) as a novel sorbent, and its optimization by experimental design methodology for determination of palladium in environmental samples. Talanta, 2012, 99, 132–139.

  • [19] Huck, C.W.; Bonn G.K. Recent developments in polymerbased sorbents for solid-phase extraction, J. Chromatogr. A, 2000, 885, 51-72.

  • [20] Ravelo-Pérez, L.M.; Herrera-Herrera, A.V.; Hernández- Borges, J.; Rodríguez-Delgado M.Á., Carbon nanotubes: Solid-phase extraction, J. Chromatogr. A, 2010, 1217, 2618- 2641.

  • [21] Latorre, C.H.; Méndez, J.Á.; García, J.B.; Martín, S.G.; Peña Crecente, R.M.; Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review, Anal. Chim. Acta, 2012, 16-35.

  • [22] Ebrahimzadeh, H.; Behbahani, M.; Yamini, Y.; Adlnasab, L.; Asgharinezhad, A.A.Optimization of Cu(II)-ion imprinted nanoparticles for trace monitoring of copper in water and fish samples using a Box–Behnken design. Reactive & Functional Polymers, 2013, 73, 23–29.

  • [23] Behbahani, M.; Taghizadeh, M.; Bagheri, A.; Hosseini, H.; Salarian, M.; Tootoonchi, A. A nanostructured ion-imprinted polymer for the selective extraction and preconcentration of ultra-trace quantities of nickel ions. Microchim. Acta, 2012, 178, 429–437.

  • [24] Pyrzynska, K. Recent developments in the determination of gold by atomic spectrometry techniques. Spectrochim. Acta. B, 2005, 60, 1316-1322.

  • [25] Li, X.; Wang, Y.; Yang, X.; Chen, J.; Fu, H.; Cheng, T. Conducting polymers in environmental analysis, TrAC Trends Anal. Chem., 2012, 39, 163-179.

  • [26] Nabid, M.R.; Sedghi, R.; Bagheri,A.; Behbahani, M.; Taghizadeh, M.; AbdiOskooie, H.; Heravi, M.M. Preparation and application of poly(2-amino thiophenol)/MWCNTs nanocomposite for adsorption and separation of cadmium and lead ions via solid phase extraction, J. Hazard. Mater., 2012, 203, 93-100.

  • [27] Nabid, M.R.; Sedghi, R.; Jamaat, P.R.; Safari, N.; Entezami, A.A. Catalytic oxidative polymerization of aniline by using transition-metal tetrasulfonatedphthalocyanine. Applied Catalysis A, 2007, 328, 52-57.

  • [28] Praveen, R.S.; Daniel, S.; Rao, T.P.; Sampath, S.; Rao, K.S. Flow injection on-line solid phase extractive preconcentration of palladium(II) in dust and rock samples using exfoliated graphite packed microcolumns and determination by flame atomic absorption spectrometry. Talanta, 2006, 70 (2), 437- 443.

  • [29] Ghaedi, M.; Shokrollahi, A.; Niknam, K.; Niknam, E.; Nijibi, A.; Soylak M. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples. J. Hazard. Mater., 2009, 168, 1022-1027.

  • [30] Venkatesh, G.; Singh, A.K. Enrichment and flame atomic absorption spectrometric determination of palladium using chelating matrices designed by functionalizing Amberlite XAD-2/16 and silica gel. Microchim. Acta, 2007, 159, 149- 155.

  • [31] Jamali, M.R.; Assadi, Y.; Shemirani, F.; Salavati-Niasari, M. Application of thiophene-2- carbaldehyde-modified mesoporous silica as a new sorbent for separation and preconcentration of palladium prior to inductively coupled plasma atomic emission spectrometric determination. Talanta, 2007, 71, 1524-1529.

  • [32] Di, P.; Davey, D.E. An optimized on-line preconcentration system for analysis of trace gold in ore samples. Talanta, 1995, 42, 1081-1088.

  • [33] Daniel, S.; Gladis, J. M.; PrasadaRao, T. Synthesis of imprinted polymer material with palladium ion nanopores and its analytical application. Anal. Chim. Acta, 2003, 488, 173- 182.

  • [34] Daniel, S.; Rao, P.P.; Rao, T.P. Investigation of different polymerization methods on the analytical performance of palladium(II) ion imprinted polymer materials. Anal. Chim. Acta, 2005, 536, 197-206.

OPEN ACCESS

Journal + Issues

Search