Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem

C. Marijuán 1 , M. Pisonero 2 ,  and Ricardo L. Soto 3
  • 1 Dpto. Matemática Aplicada, E.T.S.I. Informática, Paseo de Belén, 47011, Valladolid, Spain
  • 2 Dpto. Matemática Aplicada, E.T.S. de Arquitectura, 47014, Valladolid, Spain
  • 3 Dpto. de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile

Abstract

The real nonnegative inverse eigenvalue problem (RNIEP) asks for necessary and sufficient conditions in order that a list of real numbers be the spectrum of a nonnegative real matrix. A number of sufficient conditions for the existence of such a matrix are known. The authors gave in [11] a map of sufficient conditions establishing inclusion relations or independency relations between them. Since then new sufficient conditions for the RNIEP have appeared. In this paper we complete and update the map given in [11].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Borobia, On the Nonnegative Eigenvalue Problem, Linear Algebra Appl. 223-224 (1995) 131-140.

  • [2] A. Borobia, J. Moro, R. L. Soto, Negativity compensation in the nonnegative inverse eigenvalue problem, Linear Algebra Appl. 393 (2004) 73-89.

  • [3] A. Borobia, J. Moro, R. L. Soto, A unified view on compensation criteria in the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 428 (2008) 2574-2584.

  • [4] A. Brauer, Limits for the characteristic roots of a matrix, IV: Applications to stochastic matrices, Duke Math. J. 19 (1952) 75-91.

  • [5] R. Ellard, H. Šmigoc, Connecting sufficient conditions for the symmetric nonnegative inverse eigenvalue problem, Linear Algebra Appl. 498 (2016), 521-552.

  • [6] W. Guo, Eigenvalues of nonnegative matrices, Linear Algebra Appl. 266 (1997) 261-270.

  • [7] C. R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear Multilinear Algebra 10 (1981) 113-130.

  • [8] R. Kellogg, Matrices similar to a positive or essentially positive matrix, Linear Algebra Appl. 4 (1971) 191-204.

  • [9] T. J. Laffey and E. Meehan, A characterization of trace zero nonnegative 5 × 5 matrices, Linear Algebra Appl. 302/303 (1999) 295-302.

  • [10] C. Marijuán, M. Pisonero, On Sufficient Conditions for the RNIEP and their Margins of Realizability, Electron. Notes Discrete Math. 46 (2014) 201-208.

  • [11] C. Marijuán, M. Pisonero, R. L. Soto, A map of sufficient conditions for the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 426 (2007) 690-705.

  • [12] H. Perfect, Methods of constructing certain stochastic matrices II, Duke Math.J.22 (1955) 305-311.

  • [13] R. L. Soto, Existence and construction of nonnegative matrices with prescribed spectrum, Linear Algebra Appl. 369 (2003) 169-184.

  • [14] R. L. Soto, A family of realizability criteria for the real and symmetric nonnegative inverse eigenvalue problem, Numer. Linear Algebra Appl. 20 (2013) 336-348.

  • [15] R. L. Soto, O. Rojo, Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem, Linear Algebra Appl. 416 (2006) 844-856.

  • [16] R. L. Soto, O. Rojo, C. B. Manzaneda, On Nonnegative Realization of Partitioned Spectra, Electron. J. Linear Algebra 22 (2011) 557-572.

OPEN ACCESS

Journal + Issues

Special Matrices is a peer-reviewed, open access electronic journal that publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences.

Search