Algebraic entropy for valuation domains

Paolo Zanardo 1
  • 1 Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy

Abstract

Let R be a non-discrete Archimedean valuation domain, G an R-module, Φ ∈ EndR(G).We compute the algebraic entropy entv(Φ), when Φ is restricted to a cyclic trajectory in G. We derive a special case of the Addition Theorem for entv, that is proved directly, without using the deep results and the difficult techniques of the paper by Salce and Virili [8].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.

  • [2] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414.

  • [3] D. Dikranjan, A. Giordano Bruno, Discrete dynamical systems in group theory, Note Mat. 33 (2013), no. 1, 1–48.

  • [4] D. Dikranjan, B. Goldsmith, L. Salce, P. Zanardo, Algebraic entropy for abelian groups, Trans. Amer.Math. Soc. 361 (2009), no. 7, 3401–3434.

  • [5] L. Fuchs, L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, 84. American Mathematical Society, Providence, RI, 2001.

  • [6] D.G. Northcott, M. Reufel, A generalization of the concept of length, Quart. J. Math. Oxford (2) 16 (1965) 297–321.

  • [7] L. Salce, P. Vámos, S. Virili, Length functions, multiplicities and algebraic entropy, ForumMath. 25 (2013), no. 2, 255–282.

  • [8] L. Salce, S. Virili, The addition theorem for algebraic entropies induced by non-discrete length functions, to appear.

  • [9] L. Salce, P. Zanardo, Finitely generated modules over valuation rings, Comm. Algebra 12 (1984), no. 15-16, 1795–1812.

  • [10] L. Salce, P. Zanardo, A general notion of algebraic entropy and the rank-entropy, Forum Math. 21 (2009), no. 4, 561–587.

  • [11] P. Vámos, Length functions on modules, Ph.D. thesis, University of Shefleld, 1968.

  • [12] P. Vámos, Additive functions and duality over Noetherian rings, Quart. J. Math. Oxford Ser. (2) 19 (1968) 43–55.

  • [13] S. Virili, Length functions of Grothendieck categories with applications to infinite group representations, arXiv: 1410.8306.

  • [14] M. D. Weiss, Algebraic and other entropies of group endomorphisms,Math. Systems Theory, 8 (1974/75), no. 3, 243–248.

  • [15] P. Zanardo, Multiplicative invariants and length functions over valuation domains, J. Commut. Algebra 3 (2011), no. 4, 561–587.

OPEN ACCESS

Journal + Issues

Search