Für die digitale Holografie (DH) und die vergleichende digitale Holografie (CDH) werden computeradressierbare Modulatoren zur Hologrammrekonstruktion benötigt. Um qualitativ hochwertige Hologramme mit hoher Beugungseffizienz rekonstruieren zu können, müssen die Eigenschaften der Modulatoren genau bekannt sein. Dies macht eine Charakterisierung der Modulatoren im Hinblick auf Amplitudenmodulation, Phasenmodulation, Beugungseffizienz und Oberflächentopografie notwendig.
W. Osten, T. Baumbach, W. Jüptner: Comparative digital holography. Optics Letters, 27 (2002), p. 1764–1766.
W. Osten, T. Baumbach, S. Seebacher, W. Jüptner: Remote shape control by comparative digital holography. Proceedings Finge 2001, p. 373-382, Elsevier Science.
W. Osten: Holography and Virtual 3D-Testing. Proceedings of the International Berlin Workshop Holomet 2000, 14 (2000), p. 14–17.
T. Baumbach, W. Osten, C. v. Kopylow, W. Jüptner: Application of Comparative Digital Holography for Distant Shape Control. Proceedings SPIE 5457 (2004), p. 598–609.
D.B. Neumann: Comparative Holography. Technical Digest, Topical Meeting on Hologram Interferometry and Speckle Metrology, Paper MB2-1, Optical Society of America (1980).
F. Gyimesi, Z. Füzessy: Difference holographic interferometry: Theory, J. Mod. Optics, 35 (1988), p. 1699–1716.
Fexible Optical B.V, Micromachined Deformable Mirrors MMDMl. URL: http://www.okotech.com/mirrors [Zugriff 09.05.2005].
Fraunhofer IPMS, Cantilever Beam Micromirror Spatial Light Modulators. URL: http://www.ipms.fraunhofer.de/products/index.shtml?products_05.shtml [Zugriff 09.05.2005].
E. Lueder: Liquid Crystal Displays. John Wiley & Sons, New York 1998.
Z. Thang, G. Lu, T.S. Yu: Simple methode for measuring phase modulation in liquid crystal televisions. Optical Engineering 33 (1984), p. 3018–3022.
G. Bader, R. Bührkle, E. Luederand, C. Zeile: Fast and accurate techniques for measuring the complex transmission of liquid crystal valves. Proceedings SPIE 3015 (1997), p. 93–104.
A.G. Wagh, V.C. Rakecha: On measuring the Pancharatnam phase I interferometry. Physics Letters 197 (1995), p. 107–111.
A.G. Wagh, V.C. Rakecha: On measuring the Pancharatnam phase II SU(2) polarimetry. Physics Letters 197 (1995), p. 112–115.
H. Schmitzer, S. Klein, W. Dultz: Nonlinearity of Pancharatnam's Topological Phase. Physical Review Letters 71 (1993), p. 1530–1533.
Holoeye, Liquid Crystal on Silicon Spatial Light Modulators. URL: http://www.holoeye.de [Zugriff 09.05.2005].
M. Stukowski, M. Kujawinska: Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms. Optics and Laser in Engineering 33 (2000), p. 191–201.
O. Matoba, T.J. Naughton, Y. Frauel, N. Bertaux, B. Javidi: Real-time-three-dimensional object reconstruction by use of a phase-encoded digital hologram. Applied Optics 41 (2002), p. 6187–6192.
A. Michalkeiwicz, M. Kujawinska, J. Kretzel, L. Salbut, X. Wang, P.J. Bos: Phase manipulation and optoelectronic reconstruction of digital holograms by means of LCOS spatial light modulators. Proceedings SPIE 5776 (2005), p. 144–152.
R. Tudela, E. Martín-Badosa, I. Labastida, S. Vallmitjana, A. Carnicer: Wavefront reconstruction by adding modulation capabilities of two liquid crystal devices. Journal of Optics A, Pure and Applied Optics 5 (2003), p. 189–204.
P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, J. Richardson: Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator. Optics Communications 175 (2000), p. 347–352.
C. Wagner, S. Seebacher, W. Osten, W. Jüptner: Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology. Applied Optics 38 (1999), p. 4812–4820.
Collier, Bruckhardt, Lin: Optical Holography. Academic Press Inc., London 1971.
E. Cuche, P. Marquet, C. Depeursinge: Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Applied Optics 39(2000), p. 4070–4075.