Fusion of range measurements and semantic estimates in an evidential framework / Fusion von Distanzmessungen und semantischen Größen im Rahmen der Evidenztheorie


A detailed reconstruction of the environment is a crucial component of mobile robotic systems and enables higher level scene understanding. To achieve information redundancy heterogenous sensors need to be used with each sensor having specific strengths and weaknesses. Therefore, the goal of this work is to fuse information from multiple lidars, radars, a stereo camera and semantic camera information into one common scene representation. In contrast to past publications, we focus on the combination of distance measurements and semantic estimates in the image domain in one common evidential framework. Grid maps are used as common fusion structure which enable efficient data processing. The approach is validated on an automated driving plattform in real traffic scenarios. Experiments show that the scene reconstruction precision increases while still retaining the real-time capability.

If the inline PDF is not rendering correctly, you can download the PDF file here.


Journal + Issues

TM – Technical Measurement is a professional journal for application-based industrial measurement technology, a key component of systems for automation, process monitoring, quality control, and security. It's the official organ of the AMA (Association for Sensor Technology) and the NAMUR (Process-Industry Interest Group for Automation Technology). It also includes notifications from the GMA (VDI/VDE-Society for Measurement and Automatic Control).