Hyperphosphorylation of tau by GSK-3β in Alzheimer’s disease: The interaction of Aβ and sphingolipid mediators as a therapeutic target

Maja Jembrek, Mirjana Babić 3 , Nela Pivac 4 , Patrick Hof 5 ,  and Goran Šimić 3
  • 1 Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
  • 2 Department of Psychology, Croatian Catholic University, Zagreb, Croatia
  • 3 Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • 4 Laboratory for Molecular Psychiatry, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
  • 5 Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the extracellular deposits of β amyloid peptides (Aβ) in senile plaques, and intracellular aggregates of hyperphosphorylated tau in neurofibrillary tangles (NFT). Although accumulation of Aβ has been long considered a leading hypothesis in the disease pathology, it is increasingly evident that the role hyperphosphorylation of tau in destabilization of microtubule assembly and disturbance of axonal transport is equally detrimental in the neurodegenerative process. The main kinase involved in phosphorylation of tau is glycogen-synthase kinase 3-beta (GSK-3β). Intracellular accumulation of Aβ also likely induces increase in hyperphosphorylated tau by a mechanism dependent on GSK-3β. In addition, Aβ affects production of ceramides, the major sphingolipids in mammalian cells, by acting on sphingomyelinases, enzymes responsible for the catabolic formation of ceramides from the sphingomyelin. Generated ceramides in turn increase production of Aβ by acting on β-secretase, a key enzyme in the proteolytic processing of the amyloid precursor protein (APP), altogether leading to a ceramide-Aβ-hyperphosphorylated tau cascade that ends in neuronal death. Modulators and inhibitors acting on members of this devastating cascade are considered as potential targets for AD therapy. There is still no adequate treatment for AD patients. Novel therapeutic strategies increasingly consider the combination of multiple targets and interactions among the key members of implicated molecular pathways. This review summarizes recent findings and therapeutic perspectives in the pathology and treatment of AD, with the emphasis on the interplay between hyperphosphorylated tau, amyloid β, and sphingolipid mediators.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hanger D.P., Anderton B.H., Noble W., Tau phosphorylation: the therapeutic challenge for neurodegenerative disease, Trends Mol. Med., 2009, 15, 112–119

  • [2] Solfrizzi V., D’Introno A., Colacicco A.M., Capurso C., Del Parigi A., Capurso S., et al., Dietary fatty acids intake: possible role in cognitive decline and dementia, Exp. Gerontol., 2005, 40, 257–270

  • [3] Takechi R., Galloway S., Pallebage-Gamarallage M.M., Lam V., Mamo J.C., Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk, Prog. Lipid Res., 2010, 49, 159–170

  • [4] Roher A.E., Weiss N., Kokjohn T.A., Kuo Y.M., Kalback W., Anthony J., et al., Increased Aβ peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease, Biochemistry, 2002, 41, 11080–11090

  • [5] Presečki P., Mück-Šeler D., Mimica N., Pivac N., Mustapić M., Stipčević T., et al., Serum Lipid Levels in Patients with Alzheimer’s Disease, 2011, Coll. Antropol., 35, Suppl. 1, 115–120

  • [6] Grundke-Iqbal I., Iqbal K., Quinlan M., Tung Y.-C., Zaidi M.S., Wisniewski H.M., Microtubule-associated protein tau. A component of Alzheimer paired helical filaments, J. Biol. Chem., 1986, 6084–6089

  • [7] Blennow K., de Leon M.J., Zetterberg H., Alzheimer’s disease, Lancet, 2006, 368, 387–403

  • [8] Gouras G.K., Tampellini D., Takahashi R.H., Capetillo-Zarate E., Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease, Acta Neuropathol., 2010, 119, 523–541

  • [9] Šimić G., Gnjidić M., Kostović I., Cytoskeletal changes as an alternative view on pathogenesis of Alzheimer’s disease, Period. Biol., 1998, 100, 165–173

  • [10] Brandt R., Hundelt M., Shahani N., Tau alteration and neuronal degeneration in tauopathies: mechanisms and models, Biochim. Biophys. Acta, 2005, 1739, 331–354

  • [11] Rapoport M., Dawson H.N., Binder L.I., Vitek M.P., Ferreira A., Tau is essential to β-amyloid-induced neurotoxicity, Proc. Natl. Acad. Sci. USA, 2002, 99, 6364–6369

  • [12] Resende R., Ferreiro E., Pereira C., Resende Oliveira C., ER stress is involved in Aβ-induced GSK-3β activation and tau phosphorylation, J. Neurosci. Res., 2008, 86, 2091–2099

  • [13] Huang H.C., Jiang Z.F., Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease, J. Alzheimers Dis., 2009, 16, 15–27

  • [14] Zhang Z., Zhao R., Qi J., Wen S., Tang Y., Wang D., Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons, J. Neurosci. Res., 2011, 89, 437–447

  • [15] Jin M., Shepardson N., Yang T., Chen G., Walsh D., Selkoe D.J., Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration, Proc. Natl. Acad. Sci. USA, 2011, 108, 5819–5824

  • [16] Chabrier M.A., Blurton-Jones M., Agazaryan A.A., Nerhus J.L., Martinez-Coria H., LaFerla F.M., Soluble Aβ promotes wild-type tau pathology in vivo, J. Neurosci., 2012, 32, 17345–17350

  • [17] McKee A.C., Carreras I., Hossain L., Ryu H., Klein W.L., Oddo S., et al., Ibuprofen reduces Aβ, hyperphosphorylated tau and memory deficits in Alzheimer mice, Brain Res., 2008, 1207, 225–236

  • [18] Lanzillotta A., Sarnico I., Benarese M., Branca C., Baiguera C., Hutter-Paier B., et al., The γ-secretase modulator CHF5074 reduces the accumulation of native hyperphosphorylated tau in a transgenic mouse model of Alzheimer’s disease, J. Mol. Neurosci., 2011, 45, 22–31

  • [19] Hernandez P., Lee G., Sjoberg M., Maccioni R.B., Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Aβ25–35: involvement of lipid rafts, J. Alzheimers Dis., 2009, 16, 149–156

  • [20] Kawarabayashi T., Shoji M., Younkin L.H., Wen-Lang L., Dickson D.W., Murakami T., et al., Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer’s disease, J. Neurosci., 2004, 24,15, 3801–3809

  • [21] Grimm M.O.W., Rothhaar T.L., Hartmann T., The role of APP proteolytic processing in lipid metabolism, Exp. Brain Res., 2012, 217, 365–375

  • [22] Aronov S., Aranda G., Behar L., Ginzburg I., Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules, J. Cell Sci., 2002, 115, 3817–3827

  • [23] Esmaeli-Azad B., McCarty J.H., Feinstein S.C., Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability, J. Cell Sci., 1994, 107, 869–879

  • [24] Šimić G., Stanić G., Mladinov M., Jovanov-Milošević N., Kostović I., Hof P.R., Does Alzheimer’s disease begin in the brainstem?, Neuropathol. Appl. Neurobiol., 2009, 35, 532–554

  • [25] Takuma H., Arawaka S., Mori H., Isoforms changes of tau protein during development in various species, Dev. Brain Res., 2003, 142, 121–127

  • [26] Deshpande A., Win K.M., Busciglio J., Tau isoform expression and regulation in human cortical neurons, FASEB J., 2008, 22, 2357–2367

  • [27] Jovanov-Milošević N., Petrović D., Sedmak G., Vukšić M., Hof P.R., Šimić G., Human fetal tau protein isoform: possibilities for Alzheimer’s disease treatment, Int. J. Biochem. Cell. Biol., 2012, 44, 1290–1294

  • [28] Lee G., Neve R.L., Kosik K.S., The microtubule binding domain of tau protein, Neuron, 1989, 2, 1615–1624

  • [29] Buée L., Bussière T., Buée-Scherrer V., Delacourte A., Hof P.R., Tau protein isoforms, phosphorylation and role in neurodegenerative disorders, Brain Res. Rev., 2000, 33, 95–130

  • [30] Ballatore C., Lee V.M., Trojanowski J.Q., Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders, Nat. Rev. Neurosci., 2007, 8, 663–672

  • [31] Adams S.J., DeTure M.A., McBride M., Dickson D.W., Petrucelli L., Three repeat isoforms of tau inhibit assembly of four repeat tau filaments, PLoS One, 2010, 5, e10810

  • [32] Johnson G.V., Stoothoff W.H., Tau phosphorylation in neuronal cell function and dysfunction, J. Cell Sci., 2004, 117, 5721–5729

  • [33] Iqbal K., Liu F., Gong C.X., Grundke-Iqbal I., Tau in Alzheimer disease and related tauopathies, Curr. Alzheimer Res., 2010, 7, 656–664

  • [34] Morishima-Kawashima M., Hasegawa M., Takio K., Suzuki M., Yoshida H., Titani K., et al., Proline-directed and non-proline-directed phosphorylation of PHF-tau, J. Biol. Chem., 1995, 270, 823–829

  • [35] Wang J.Z., Xia Y.Y., Grundke-Iqbal I., Iqbal K., Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration, J. Alzheimers Dis., 2013, Suppl 1, S123–S139

  • [36] Gray E.G., Paula-Barbosa M., Roher A., Alzheimer’s disease: paired helical filaments and cytomembranes, Neuropathol. Appl. Neurobiol., 1987, 13, 91–110

  • [37] Jenkins S.M., Johnson G.V., Modulation of tau phosphorylation within its microtubule-binding domain by cellular thiols, J. Neurochem., 1999, 73, 1843–1850

  • [38] Cho J.-H., Johnson G.V.W., Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau’s ability to bind and stabilize microtubules, J. Neurochem., 2004, 88, 349–358

  • [39] Alonso A.D., Di Clerico J., Li B., Corbo C.P., Alaniz M.E., Grundke-Iqbal I., et al., Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration, J. Biol. Chem., 2010, 285, 30851–30860

  • [40] Iijima-Ando K., Sekiya M., Maruko-Otake A., Ohtake Y., Suzuki E., Lu B., et al., Loss of axonal mitochondria promotes taumediated neurodegeneration and Alzheimer’s disease-related tau phosphorylation via PAR-1, PLoS Genet., 2012, 8, e1002918

  • [41] Alonso A.C, Zaidi T., Novak M., Grundke-Iqbal I., Iqbal K., Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments, Proc. Natl. Acad. Sci. USA, 2001, 98, 6923–6928

  • [42] Kimura T., Ono T., Takamatsu J., Yamamoto H., Ikegami K., Kondo A., et al., Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments, Dementia, 1996, 7, 177–181

  • [43] Augustinack J.C., Schneider A., Mandelkow E.-M., Hyman B.T., Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease, Acta Neuropathol., 2002, 103, 26–35

  • [44] Arnold S.E., Hyman B.T., Flory J., Damasio A.R., Van Hoesen G.W., The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease, Cereb. Cortex, 1991, 1, 103–116

  • [45] Braak H., Braak E., Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol., 1991, 82, 239–259

  • [46] Šimić G., Kostović I., Winblad B., Bogdanović N., Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease, J. Comp. Neurol., 1997, 379, 482–494

  • [47] Šimić G., Bexheti S., Kelović Z., Kos M., Grbić K., Hof P.R., et al., Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex, Neuroscience, 2005, 130, 911–25

  • [48] Braak H., Thal D.R., Ghebremedhin E., Del Tredici K., Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years, J. Neuropathol. Exp. Neurol., 2011, 70, 960–969

  • [49] Watanabe A., Hasegawa M., Suzuki M., Takio K., Morishima-Kawashima M., Titani K., et al., In vivo phosphorylation sites in fetal and adult rat tau, J. Biol. Chem., 1993, 268, 25712–25717

  • [50] Avila J., Tau phosphorylation and aggregation in Alzheimer’s disease pathology, FEBS Lett., 2006, 580, 2922–2927

  • [51] Ferrer I., Gomez-Isla T., Puig B., Freixes M., Ribé E., Dalfó E., et al., Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies, Curr. Alzheimer Res., 2005, 2, 3–18

  • [52] Michel G., Mercken M., Murayama M., Noguchi K., Ishiguro K., Imahori K., et al., Characterization of tau phosphorylation in glycogen synthase kinase-3β and cyclin dependent kinase-5 activator (p23) transfected cells, Biochim. Biophys. Acta, 1998, 1380, 177–182

  • [53] Maccioni R.B., Otth C., Concha I.I., Muñoz J.P., The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology, Eur. J. Biochem., 2001, 268, 1518–1527

  • [54] Li G., Yin H., Kuret J., Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules, J. Biol. Chem., 2004, 279, 15938–15945

  • [55] Lebouvier T., Scales T.M., Williamson R., Noble W., Duyckaerts C., Hanger D.P et al., The microtubule-associated protein tau is also phosphorylated on tyrosine, J. Alzheimers Dis., 2009, 18, 1–9

  • [56] Cai Z., Yan L.-J., Li K., Quazi S.H., Zhao B., Roles of AMP-activated protein kinase in Alzheimer’s disease, Neuromol. Med., 2012, 14, 1–14

  • [57] Martin L., Latypova X., Wilson C.M., Magnaudeix A., Perrin M.L., Yardin C., et al., Tau protein kinases: involvement in Alzheimer’s disease, Ageing Res. Rev., 2013, 12, 289–309

  • [58] Martin L., Magnaudeix A., Esclaire F., Yardin C., Terro F., Inhibition of glycogen synthase kinase-3β downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A, Brain Res., 2009, 1252, 66–75

  • [59] Matsuo E.S., Shin R.W., Billingsley M.L., Van de Voorde A., O’Connor M., Trojanowski J.Q., et al., Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau, Neuron, 1994, 13, 989–1002

  • [60] Martin L., Latypova X., Wilson C.M., Magnaudeix A., Perrin M.L., Terro F., Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A, Ageing Res Rev., 2013, 12, 39–49

  • [61] Yamaguchi H., Ishiguro K., Uchida T., Takashima A., Lemere C.A., Imahori K., Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 β and cyclin-dependent kinase 5, a component of TPK II, Acta Neuropathol., 1996, 92, 232–241

  • [62] Pei J.J., Braak E., Braak H., Grundke-Iqbal I., Iqbal K., Winblad B., et al., Distribution of active glycogen synthase kinase 3β (GSK-3 β) in brains staged for Alzheimer disease neurofibrillary changes, J. Neuropathol. Exp. Neurol., 1999, 58, 1010–1019

  • [63] Leroy K., Yilmaz Z., Brion J.P., Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration, Neuropathol. Appl. Neurobiol., 2007, 33, 43–55

  • [64] Phiel C.J., Wilson C.A., Lee V.M., Klein P.S., GSK-3α regulates production of Alzheimer’s disease amyloid-beta peptides, Nature, 2003, 423, 435–439

  • [65] Wagner U., Utton M., Gallo J.-M., Miller C.C.J., Cellular phosphorylation of tau by GSK-3β influences tau binding to microtubules and microtubule organisation, J. Cell Sci., 1996, 109, 1537–1543

  • [66] Muñoz-Montaño J.R., Moreno F.J., Avila J., Diaz-Nido J., Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons, FEBS Lett., 1997, 411, 183–188

  • [67] Cuchillo-Ibanez I., Seereeram A., Byers H.L., Leung K.Y., Ward M.A., Anderton B.H., et al., Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin, FASEB J., 2008, 22, 3186–3195

  • [68] Li T., Hawkes C., Qureshi H.Y., Kar S., Paudel H.K., Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau sitespecifically for glycogen synthase kinase 3β, Biochemistry, 2006, 45, 3134–3145

  • [69] Terwel D., Muyllaert D., Dewachter I., Borghgraef P., Croes S., Devijver H., et al., Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice, Am. J. Pathol., 2008, 172, 786–798

  • [70] Noble W., Olm V., Takata K., Casey E., Mary O., Meyerson J., et al., Cdk5 is a key factor in tau aggregation and tangle formation in vivo, Neuron, 2003, 38, 555–565

  • [71] Rankin C.A., Sun Q., Gamblin T.C., Tau phosphorylation by GSK-3β promotes tangle-like filament morphology, Mol. Neurodeg., 2007, 2, 12

  • [72] Lee C.W., Lau K.F., Miller C.C., Shaw P.C., Glycogen synthase kinase-3β-mediated tau phosphorylation in cultured cell lines, Neuroreport, 2003, 14, 257–260

  • [73] Liu S.J., Zhang A.H., Li H.L., Wang Q., Deng H.M., Netzer W.J., et al., Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory, J. Neurochem., 2003, 87, 1333–1344

  • [74] Su Y., Ryder J., Li B., Wu X., Fox N., Solenberg P., et al., Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing, Biochemistry, 2004, 43, 6899–6908

  • [75] Takashima A., Murayama M., Murayama O., Kohno T., Honda T., Yasutake K., et al., Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau, Proc. Natl. Acad. Sci. USA, 1998, 95, 9637–9641

  • [76] Metcalfe M.J., Figueiredo-Pereira M.E., Relationship between tau pathology and neuroinflammation in Alzheimer’s disease, Mt. Sinai J. Med., 2010, 77, 50–58

  • [77] Parr C., Carzaniga R., Gentleman S.M., Van Leuven F., Walter J., Sastre M., Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein, Mol. Cell. Biol., 2012, 32, 4410–4418

  • [78] Noble W., Planel E., Zehr C., Olm V., Meyerson J., Suleman F., et al., Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo, Proc. Natl. Acad. Sci. USA, 2005, 102, 6990–6995

  • [79] Zhao L., Wang F., Gui B., Hua F., Qian Y., Prophylactic lithium alleviates postoperative cognition impairment by phosphorylating hippocampal glycogen synthase kinase-3β (Ser9) in aged rats, Exp. Gerontol., 2011, 46, 1031–1036

  • [80] Caccamo A., Oddo S., Tran L.X., LaFerla F.M., Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles, Am. J. Pathol., 2007, 170, 1669–1675

  • [81] Serenó L., Coma M., Rodríguez M., Sánchez-Ferrer P., Sánchez M.B., Gich I., et al., A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo, Neurobiol. Dis., 2009, 35, 359–367

  • [82] Medina M., Castro A., Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic, Curr. Opin. Drug Disc. Dev., 2008, 11, 533–543

  • [83] Kramer T., Schmidt B., Lo Monte F., Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models, Int. J. Alzheimers Dis., 2012, 381029

  • [84] Fumagalli F., Racagni G., Riva M.A., The expanding role of BDNF: a therapeutic target for Alzheimer’s disease?, Pharmacogenomics J., 2006, 6, 8–15

  • [85] Blurton-Jones M., Kitazawa M., Martinez-Coria H., Castello N.A., Müller F.J., Loring J.F., et al., Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease, Proc. Natl. Acad. Sci. USA, 2009, 106, 13594–13599

  • [86] Elliott E., Atlas R., Lange A., Ginzburg I., Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3Kinase signalling mechanism, Eur. J. Pharmacol., 2005, 22, 1081–1089

  • [87] Tong L., Balazs R., Thornton P.L., Cotman C.W., β-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons, J. Neurosci., 2004, 24, 6799–6809

  • [88] Magrané J., Rosen K.M., Smith R.C., Walsh K., Gouras G.K., Querfurth H.W., Intraneuronal β-amyloid expression downregulates the Akt survival pathway and blunts the stress response, J. Neurosci., 2005, 25, 10960–10969

  • [89] Baki L., Shioi J., Wen P., Shao Z., Schwarzman A., Gama-Sosa M., et al., PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations, EMBO J., 2004, 23, 2586–2596

  • [90] Jana A., Hogan E.L., Pahan K., Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death, J. Neurol. Sci., 2009, 278, 5–15

  • [91] Ben-David O., Futerman A.H., The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases, Neuromolecular. Med., 2010, 12, 341–350

  • [92] Rao R.P., Vaidyanathan N., Rengasamy M., Oommen A.M., Somaiya N., Jagannath M.R., Sphingolipid metabolic pathway: an overview of major roles played in human diseases, J. Lipids, 2013, 178910

  • [93] Haughey N.J., Bandaru V.V., Bae M., Mattson M.P., Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis, Biochim. Biophys. Acta, 2010, 1801, 878–886

  • [94] Mielke M.M., Lyketsos C.G., Alterations of the sphingolipid pathway in Alzheimer’s disease: new biomarkers and treatment targets?, Neuromol. Med., 2010, 12, 331–340

  • [95] Mielke M.M., Haughey N.J., Could plasma sphingolipids be diagnostic or prognostic biomarkers for Alzheimer’s disease?, Clin. Lipidol., 2012, 7, 525–536

  • [96] Gomez-Brouchet A., Pchejetski D., Brizuela L., Garcia V., Altié M.F., Maddelein M.L., et al., Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-β peptide, Mol. Pharmacol., 2007, 72, 341–349

  • [97] Seyb K.I., Ansar S., Li G., Bean J., Michaelis M.L., Dobrowsky R.T., p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide, J. Mol. Neurosci., 2007, 31, 23–35

  • [98] Barth B.M., Gustafson S.J, Kuhn T.B., Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine TNFα, J. Neurosci. Res., 2012, 90, 229–242

  • [99] Grösch S., Schiffmann S., Geisslinger G., Chain length-specific properties of ceramides, Prog. Lipid Res., 2012, 51, 50–62

  • [100] Katsel P., Li C., Haroutunian V., Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease?, Neurochem. Res., 2007, 32, 845–856

  • [101] Tamboli I.Y., Prager K., Barth E., Heneka M., Sandhoff K., Walter J., Inhibition of glycosphingolipid biosynthesis reduces secretion of the β-amyloid precursor protein and amyloid β -peptide, J. Biol. Chem., 2005, 280, 28110–28117

  • [102] Kosicek M., Zetterberg H., Andreasen N., Peter-Katalinic J., Hecimovic S., Elevated cerebrospinal fluid sphingomyelin levels in prodromal Alzheimer’s disease, Neurosci. Lett., 2012, 516, 302–305

  • [103] Mielke M.M., Haughey N.J., Bandaru V.V., Weinberg D.D., Darby E., Zaidi N., et al., Plasma sphingomyelins are associated with cognitive progression in Alzheimer’s disease, J. Alzheimers Dis., 2011, 27, 259–269

  • [104] Takasugi N., Sasaki T., Suzuki K., Osawa S., Isshiki H., Hori Y., et al., BACE1 activity is modulated by cell-associated sphingosine-1-phosphate, J. Neurosci., 2011, 31, 6850–6857

  • [105] Yanagisawa K., Odaka A., Suzuki N., Ihara Y., GM1 gangliosidebound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer’s disease, Nat. Med., 1995, 1, 1062–1066

  • [106] Utsumi M., Yamaguchi Y., Sasakawa H., Yamamoto N., Yanagisawa K., Kato K., Up-and-down topological mode of amyloid β-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters, Glycoconj. J., 2009, 26, 999–1006

  • [107] Grimm M.O.W., Zimmer V.C., Lehmann J., Grimm H.S., Hartmann T., The impact of cholesterol, DHA, and sphingolipids on Alzheimer’s disease, BioMed Res. Int., 2013, 814390

  • [108] Han X., Holtzman M.D., McKeel D.W. Jr., Kelley J., Morris J.C., Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis, J. Neurochem., 2002, 82, 809–818

  • [109] Kawakami F., Yamaguchi A., Suzuki K., Yamamoto T., Ohtsuki K., Biochemical characterization of phospholipids, sulfatide and heparin as potent stimulators for autophosphorylation of GSK-3β and the GSK-3β -mediated phosphorylation of myelin basic protein in vitro, J. Biochem., 2008, 143, 359–367

  • [110] Mielke M.M., Bandaru V.V., Haughey N.J., Xia J., Fried L.P., Yasar S., et al., Serum ceramides increase the risk of Alzheimer disease: the Women’s Health and Aging Study II, Neurology, 2012, 79, 633–641

  • [111] Cutler R.G., Kelly J., Storie K., Pedersen W.A., Tammara A., Hatanpaa K., et al., Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2004, 17, 2070–2075

  • [112] He X., Huang Y., Li B., Gong C.X., Schuchman E.H., Deregulation of sphingolipid metabolism in Alzheimer’s disease, Neurobiol. Aging, 2010, 31, 398–408

  • [113] Filippov V., Song M.A., Zhang K., Vinters H.V., Tung S., Kirsch W.M., et al., Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases, J. Alzheimers Dis., 2012, 29, 537–547

  • [114] Toman R.E., Movsesyan V., Murthy S.K., Milstien S., Spiegel S., Faden A.I., Ceramide-induced cell death in primary neuronal cultures: upregulation of ceramide levels during neuronal apoptosis, J. Neurosci. Res., 2002, 68, 323–330

  • [115] Zhang X., Wu J., Dou Y., Xia B., Rong W., Rimbach G., et al., Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis, Eur. J. Pharmacol., 2012, 679, 51–59

  • [116] Ruvolo P.P., Deng X., Ito T., Carr B.K., May W.S., Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A, J. Biol. Chem., 1999, 274, 20296–20300

  • [117] Puglielli L., Ellis B.C., Saunders A.J., Kovacs D.M., Ceramide stabilizes β-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid β-peptide biogenesis, J. Biol. Chem., 2003, 30, 19777–19783

  • [118] Patil S., Melrose J., Chan C., Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons, Eur. J. Neurosci., 2007, 26, 2131–2141

  • [119] Jana A., Pahan K., Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease, J. Biol. Chem., 2004, 279, 51451–51459

  • [120] Malaplate-Armand C., Florent-Béchard S., Youssef I., Koziel V., Sponne I., Kriem B., et al., Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinaseceramide pathway, Neurobiol. Dis., 2006, 23, 178–189

  • [121] Geekiyanage H., Upadhye A., Chan C., Inhibition of serine palmitoyltransfrase reduces Aβ and tau hyperphosphorylation in a murine model: a safe therapeutic strategy for Alzheimer’s disease, Neurobiol. Aging, 2013, 34, 2037–2051

  • [122] Jana A., Pahan K., Fibrillar amyloid-β-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease, J. Neurosci., 2010, 30, 12676–12689

  • [123] Liu L., Martin R., Chan C., Palmitate-activated astrocytes via serine palmitoyl transferase increase BACE1 in primary neurons by sphingomyelinases, Neurobiol. Aging, 2013, 34, 540–550

  • [124] Patil S., Sheng L., Masserang A., Chan C., Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons, Neurosci. Lett., 2006, 406, 55–99

  • [125] Grimm M.O., Grösgen S., Rothhaar T.L., Burg V.K., Hundsdörfer B., Haupenthal V.J., et al., Intracellular APP domain regulates serinepalmitoyl-CoA transferase expression and is affected in Alzheimer’s disease, Int. J. Alzheimers Dis., 2011, 695413

  • [126] Tsai G.E., Falk W.E., Gunther J., Coyle J.T., Improved cognition in Alzheimer’s disease with short-term D-cycloserine treatment, Am. J. Psychiatry, 1999, 156, 467–469

  • [127] Mukhopadhyay A., Saddoughi S.A., Song P., Sultan I., Ponnusamy S., Senkal C.E., et al., Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling, FASEB J., 2009, 23, 751–763

  • [128] Darios F., Muriel M.P., Khondiker M.E., Brice A., Ruberg M., Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau, J. Neurosci., 2005, 25, 4159–4168

  • [129] Pérez M., Hernández F., Lim F., Díaz-Nido J., Avila J., Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model, J. Alzheimers Dis., 2003, 5, 301–308

  • [130] Nakashima H., Ishihara T., Suguimoto P., Yokota O., Oshima E., Kugo A., et al., Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies, Acta Neuropathol., 2005, 110, 547–556

  • [131] Engel T., Goñi-Oliver P., Lucas J.J., Avila J., Hernández F., Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert, J. Neurochem., 2006, 99, 1445–1455

  • [132] Rockenstein E., Torrance M., Adame A., Mante M., Bar-on P., Rose J.B., et al., Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation, J. Neurosci., 2007, 27, 1981–1991

  • [133] Leroy K., Ando K., Héraud C., Yilmaz Z., Authelet M., Boeynaems J.M., et al., Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology, J. Alzheimers Dis., 2010, 19, 705–719

  • [134] Onishi T., Iwashita H., Uno Y., Kunitomo J., Saitoh M., Kimura E., et al., A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1, 3, 4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease, J. Neurochem., 2011, 119, 1330–1340

  • [135] Noh M.Y., Chun K., Kang B.Y., Kim H., Park J.S., Lee H.C., et al., Newly developed glycogen synthase kinase-3 (GSK-3) inhibitors protect neuronal cells death in amyloid-β induced cell model and in a transgenic mouse model of Alzheimer’s disease, Biochem. Biophys. Res. Commun., 2013, 435, 274–281

OPEN ACCESS

Journal + Issues

Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.
Reports novel findings that are likely to change the direction of thinking and practice in biomedical sciences. Covers research findings in all subfields of neuroscience.

Search