Pentose-phosphate pathway disruption in the pathogenesis of Parkinson’s disease

Laura Dunn 1 , Vanessa Fairfield 1 , Shanay Daham 1 , Juan Bolaños 2 ,  und Simon Heales
  • 1 Undergraduate School of Medicine, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
  • 2 Institute of Functional Biology and Genomics, University of Salamanca — Consejo Superior de Investigaciones Científicas, 37007, Salamanca, Spain
  • 3 Chemical Pathology Department, Great Ormond Street Hospital, London, WC1N 1LE, UK
  • 4 Centre for Translational Genomics, University College London, Institute of Child Health, London, WC1N 1EH, UK
  • 5 Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, WC1N 6BG, UK


Oxidative stress is known to be a key factor in the pathogenesis of Parkinson’s disease (PD). Neuronal redox status is maintained by glucose metabolism via the pentose-phosphate pathway and it is known that disruption of glucose metabolism is damaging to neurons. Accumulating evidence supports the idea that glucose metabolism is altered in PD and dysregulation of the pentose-phosphate pathway in this disease has recently been shown. In this review, we present an overview of the literature regarding neuronal glucose metabolism and PD, and discuss the implications of these findings for PD pathogenesis and possible future therapeutic avenues.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • [1] Healy D.G., Falchi M., O’Sullivan S.S., Bonifati V., Durr A., Bressman S., et al., Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study, Lancet Neurol., 2008, 7, 583–590

  • [2] Surmeier D.J., Guzman J.N., Sanchez-Padilla J., Goldberg J.A., The origins of oxidant stress in Parkinson’s disease and therapeutic strategies, Antioxid. Redox Signal., 2011, 14, 1289–1301

  • [3] Hurtig H.I., Trojanowski J.Q., Galvin J., Ewbank D., Schmidt M.L., Lee V.M., et al., Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease, Neurology, 2000, 54, 1916–1921

  • [4] Dias V., Junn E., Mouradian M.M., The role of oxidative stress in Parkinson’s disease, J. Parkinsons Dis., 2013, 3, 461–491

  • [5] Alam Z.I., Daniel S.E., Lees A.J., Marsden D.C., Jenner P., Halliwell B., A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease, J. Neurochem., 1997, 69, 1326–1329

  • [6] Jenner P., Oxidative stress in Parkinson’s disease, Ann. Neurol., 2003, 53(Suppl. 3), S26–S36, discussion S36–38

  • [7] Ben-Yoseph O., Boxer P.A., Ross B.D., Oxidative stress in the central nervous system: monitoring the metabolic response using the pentose phosphate pathway, Dev. Neurosci., 1994, 16, 328–336

  • [8] Salvemini F., Franzé A., Iervolino A., Filosa S., Salzano S., Ursini M.V., Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression, J. Biol. Chem., 1999, 274, 2750–2757

  • [9] Pandolfi P.P., Sonati F., Rivi R., Mason P., Grosveld F., Luzzatto L., Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress, EMBO J., 1995, 14, 5209–5215

  • [10] Dunn L., Allen G.F., Mamais A., Ling H., Li A., Duberley K.E., et al., Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease, Neurobiol. Aging, 2014, 35, 1111–1115

  • [11] Bolanos J.P., Heales S.J., Persistent mitochondrial damage by nitric oxide and its derivatives: neuropathological implications, Front. Neuroenergetics, 2010, 2, 1

  • [12] Herrero-Mendez A., Almeida A., Fernández E., Maestre C., Moncada S., Bolaños J.P., The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1, Nat. Cell Biol., 2009, 11, 747–752

  • [13] Pellerin L., Magistretti P.J., Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. USA, 1994, 91, 10625–10629

  • [14] Tsacopoulos M., Magistretti P.J., Metabolic coupling between glia and neurons, J. Neurosci., 1996, 16, 877–885

  • [15] Stokes A.H., Hastings T.G., Vrana K.E., Cytotoxic and genotoxic potential of dopamine, J. Neurosci. Res., 1999, 55, 659–665<659::AID-JNR1>3.0.CO;2-C

  • [16] Graham D.G., Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones, Mol. Pharmacol., 1978, 14, 633–643

  • [17] Halliwell B., Gutteridge J.M., The importance of free radicals and catalytic metal ions in human diseases, Mol. Aspects Med., 1985, 8, 89–193

  • [18] Dexter D.T., Wells F.R., Agid F., Agid Y., Lees A.J., Jenner P., et al., Increased nigral iron content in postmortem parkinsonian brain, Lancet, 1987, 2, 1219–1220

  • [19] Jenner P., Olanow C.W., Oxidative stress and the pathogenesis of Parkinson’s disease, Neurology, 1996, 47(Suppl. 3), S161–170

  • [20] Langston J.W., Ballard P.A.Jr., Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, N. Engl. J. Med., 1983, 309, 310

  • [21] Ramsay R.R., Dadgar J., Trevor A., Singer T.P., Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP, Life Sci., 1986, 39, 581–588

  • [22] Schapira A.H., Cooper J.M., Dexter D., Jenner P., Clark J.B., Marsden C.D., Mitochondrial complex I deficiency in Parkinson’s disease, Lancet, 1989, 333, 1269

  • [23] Bolaños J.P., Peuchen S., Heales S.J., Land J.M., Clark J.B., Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes, J. Neurochem., 1994, 63, 910–916

  • [24] Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., et al., Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease, Biochem. Biophys. Res. Commun., 1989, 163, 1450–1455

  • [25] Lindroos M.M., Majamaa K., Tura A., Mari A., Kalliokoski K.K., Taittonen M.T., et al., m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive beta-cell dysfunction, Diabetes, 2009, 58, 543–549

  • [26] Powers W.J., Videen T.O., Markham J., Black K.J., Golchin N., Perlmutter J.S., Cerebral mitochondrial metabolism in early Parkinson’s disease, J. Cereb. Blood Flow Metab., 2008, 28, 1754–1760

  • [27] Almeida A., Almeida J., Bolaños J.P., Moncada S., Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection, Proc. Natl. Acad. Sci. USA, 2001, 98, 15294–15299

  • [28] Almeida A., Moncada S., Bolaños J.P., Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway, Nat. Cell Biol., 2004, 6, 45–51

  • [29] Cohen S.S., Scott D.B., Gluconokinase and the oxidative path for glucose-6-phosphate utilization, Nature, 1950, 166, 781–782

  • [30] Filosa S., Fico A., Paglialunga F., Balestrieri M., Crooke A., Verde P., et al., Failure to increase glucose consumption through the pentosephosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress, Biochem. J., 2003, 370, 935–943

  • [31] Borghammer P., Perfusion and metabolism imaging studies in Parkinson’s disease, Dan. Med. J., 2012, 59, B4466

  • [32] De Rosa A., Criscuolo C., Mancini P., De Martino M., Giordano I.A., Pappatà S., et al., Genetic screening for LRRK2 gene G2019S mutation in Parkinson’s disease patients from Southern Italy, Parkinsonism Relat. Disord., 2009, 15, 242–244

  • [33] Volonté M.A., Garibotto V., Spagnolo F., Panzacchi A., Picozzi P., Franzin A., et al., Changes in brain glucose metabolism in subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease, Parkinsonism Relat. Disord., 2012, 18, 770–774

  • [34] Henchcliffe C., Shungu D.C., Mao X., Huang C., Nirenberg M.J., Jenkins B.G., et al., Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson’s disease, Ann. NY Acad. Sci., 2008, 1147, 206–220

  • [35] Ahmed S.S., Santosh W., Kumar S., Christlet H.T., Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection, J. Biomed. Sci., 2009, 16, 63

  • [36] Zheng B., Liao Z., Locascio J.J., Lesniak K.A., Roderick S.S., Watt M.L., et al., PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease, Sci. Transl. Med., 2010, 2, 52ra73

  • [37] Bassil F., Fernagut P.O., Bezard E., Meissner W.G., Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification?, Prog. Neurobiol., 2014, 118C, 1–18

  • [38] Heales S.J., Davies S.E., Bates T.E., Clark J.B., Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration, Neurochem. Res., 1995, 20, 31–38

  • [39] Herken H., Neurotoxin-induced impairment of biopterin synthesis and function: initial stage of a Parkinson-like dopamine deficiency syndrome, Neurochem. Int., 1990, 17, 223–238

  • [40] Sian J., Dexter D.T., Lees A.J., Daniel S., Agid Y., Javoy-Agid F., et al., Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia, Ann. Neurol., 1994, 36, 348–355

  • [41] Dexter D.T., Sian J., Rose S., Hindmarsh J.G., Mann V.M., Cooper J.M., et al., Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease, Ann. Neurol., 1994, 35, 38–44

  • [42] Russell R.L., Siedlak S.L., Raina A.K., Bautista J.M., Smith M.A., Perry G., Increased neuronal glucose-6-phosphate dehydrogenase and sulfhydryl levels indicate reductive compensation to oxidative stress in Alzheimer disease, Arch. Biochem. Biophys., 1999, 370, 236–239

  • [43] Martins R.N., Harper C.G., Stokes G.B., Masters C.L., Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer’s disease may reflect oxidative stress, J. Neurochem., 1986, 46, 1042–1045

  • [44] Meijer A.E., The pentose phosphate pathway in skeletal muscle under patho-physiological conditions. A combined histochemical and biochemical study, Prog. Histochem. Cytochem., 1991, 22, 1–118

  • [45] Gupte S.A., Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases, Curr. Opin. Investig. Drugs, 2008, 9, 993–1000

  • [46] Ursini M.V., Parrella A., Rosa G., Salzano S., Martini G., Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress, Biochem. J., 1997, 323, 801–806

  • [47] Ninfali P., Guidi L., Aluigi G., Biagiotti E., Del Grande P., High glucose-6-phosphate dehydrogenase activity contributes to the structural plasticity of periglomerular cells in the olfactory bulb of adult rats, Brain Res., 1999, 819, 150–154

  • [48] Braak H., Del Tredici K., Rüb U., de Vos R.A., Jansen Steur E.N., Braak E., Staging of brain pathology related to sporadic Parkinson’s disease, Neurobiol. Aging, 2003, 24, 197–211

  • [49] Kirby J., Halligan E., Baptista M.J., Allen S., Heath P.R., Holden H., et al., Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS, Brain, 2005, 128, 1686–1706

  • [50] Cosentino C., Grieco D., Costanzo V., ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair, EMBO J., 2011, 30, 546–555

  • [51] Davies P., Moualla D., Brown D.R., Alpha-synuclein is a cellular ferrireductase, PLoS One, 2011, 6, e15814

  • [52] Bendor J.T., Logan T.P., Edwards R.H., The function of alpha-synuclein, Neuron, 2013, 79, 1044–1066

  • [53] Bellucci A., Collo G., Sarnico I., Battistin L., Missale C., Spano P., Alpha-synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D2/D3 receptor activation, J. Neurochem., 2008, 106, 560–577

  • [54] Fornai F., Schlüter O.M., Lenzi P., Gesi M., Ruffoli R., Ferrucci M., et al., Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alphasynuclein, Proc. Natl. Acad. Sci. USA, 2005, 102, 3413–3418

  • [55] Rodriguez-Araujo G., Nakagami H., Hayashi H., Mori M., Shiuchi T., Minokoshi Y., et al., Alpha-synuclein elicits glucose uptake and utilization in adipocytes through the Gab1/PI3K/Akt transduction pathway, Cell. Mol. Life Sci., 2013, 70, 1123–1133

  • [56] Liberatore G.T., Jackson-Lewis V., Vukosavic S., Mandir A.S., Vila M., McAuliffe W.G., et al., Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease, Nat. Med., 1999, 5, 1403–1409

  • [57] Fountaine T.M., Venda L.L., Warrick N., Christian H.C., Brundin P., Channon K.M., et al., The effect of alpha-synuclein knockdown on MPP+ toxicity in models of human neurons, Eur. J. Neurosci., 2008, 28, 2459–2473

  • [58] Adamczyk A., Czapski G.A., Kaźmierczak A., Strosznajder J.B., Effect of N-methyl-D-aspartate (NMDA) receptor antagonists on alphasynuclein-evoked neuronal nitric oxide synthase activation in the rat brain, Pharmacol. Rep., 2009, 61, 1078–1085

  • [59] Adamczyk A., Kaźmierczak A., Czapski G.A., Strosznajder J.B., Alphasynuclein induced cell death in mouse hippocampal (HT22) cells is mediated by nitric oxide-dependent activation of caspase-3, FEBS Lett., 2010, 584, 3504–3508

  • [60] Clancy R.M., Levartovsky D., Leszczynska-Piziak J., Yegudin J., Abramson S.B., Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary, Proc. Natl. Acad. Sci. USA, 1994, 91, 3680–3684

  • [61] Bolaños J.P., Delgado-Esteban M., Herrero-Mendez A., Fernandez-Fernandez S., Almeida A., Regulation of glycolysis and pentosephosphate pathway by nitric oxide: impact on neuronal survival, Biochim. Biophys. Acta, 2008, 1777, 789–793

  • [62] Mejías R., Villadiego J., Pintado C.O., Vime P.J., Gao L., Toledo-Aral J.J., et al., Neuroprotection by transgenic expression of glucose-6-phosphate dehydrogenase in dopaminergic nigrostriatal neurons of mice, J. Neurosci., 2006, 26, 4500–4508

  • [63] Opperdoes F.R., Michels P.A., Enzymes of carbohydrate metabolism as potential drug targets, Int. J. Parasitol., 2001, 31, 482–490


Zeitschrift + Hefte

Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.
Reports novel findings that are likely to change the direction of thinking and practice in biomedical sciences. Covers research findings in all subfields of neuroscience.