Electrostatic potential in crystals of α-boron, γ-boron and boron carbide

Christian B. Hübschle 1  and Sander van Smaalen 2
  • 1 Laboratory of Crystallography, University of Bayreuth, Bayreuth 95447, Germany
  • 2 Laboratory of Crystallography, University of Bayreuth, Bayreuth 95447, Germany
Christian B. Hübschle and Sander van Smaalen

Abstract

An overview is given of the recently proposed method for computation of the electrostatic potential (ESP) of dynamic charge densities derived from multipole models [C. B. Hubschle, S. van Smaalen, J. Appl. Crystallogr.2017, 50, 1627]. The dynamic ESP is presented for the multipole models of the boron polymorphs α-B12 and γ-B28, and stoichiometric boron carbide B13C2. Minimum values of the ESP are conspiciously equal at approximately −1 electron/Å. Regions with the ESP close to its minimum value form an extended network throughout the crystal structures at locations far away from atoms and bonds. Boron and boron carbide are extended solids containing an infinite network of strong chemical bonds. We have shown that for such solids, the ESP can usefully considered on Hirshfeld surfaces encompassing groups of atoms. Accordingly, we discuss bonding in boron and boron carbide with aid of the ESP on the Hirsfeld surface encompassing a B12 icosahedral cluster. The structure of the ESP corroborates the interpretation of the bonding characteristics previously proposed for α-B12, γ-B28 and B13C2.

    • Supplementary material
  • [1]

    P. Politzer, J. S. Murray, The fundamental nature and role of the electostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134.

    • Crossref
    • Export Citation
  • [2]

    P. Politzer, Y. Ma, P. Lane, M. C. Concha, Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int. J. Quantum Chem. 2005, 105, 341.

    • Crossref
    • Export Citation
  • [3]

    A. Kumar, S. D. Yeole, S. R. Gadre, R. Lopez, J. F. Rico, G. Ramirez, I. Ema, D. Zorrilla, DAMQT 2.1.0: a new version of the DAMQT package enabled with the topographical analysis of electron density and electrostatic potential in molecules. J. Comp. Chem. 2015, 36, 2350.

    • Crossref
    • Export Citation
  • [4]

    R. F. Stewart, Electron population analysis with rigid pseudoatoms. Acta Crystallogr. A 1976, 32, 565.

    • Crossref
    • Export Citation
  • [5]

    N. K. Hansen, P. Coppens, Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr. A 1978, 34, 909.

    • Crossref
    • Export Citation
  • [6]

    Z. Su, P. Coppens, On the mapping of electrostatic properties from the multipole description of the charge density. Acta Crystallogr. A 1992, 48, 188.

    • Crossref
    • PubMed
    • Export Citation
  • [7]

    N. Ghermani, C. Lecomte, N. Bouhmaida, Electrostatic potential from high-resolution X-ray diffraction. Application to a pseudo-peptide molecule. Z. Naturforsch. 1993, 48a, 91.

  • [8]

    R. F. Stewart, B. M. Craven, Molecular eletrostatic potentials from crystal diffraction: the neurotransmitter γ-aminobutyric acid. Biophys. J. 1993, 65, 998.

    • Crossref
    • Export Citation
  • [9]

    A. Volkov, H. F. King, P. Coppens, L. J. Farrugia, On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model. Acta Crystallogr. A 2006, 62, 400.

    • Crossref
    • PubMed
    • Export Citation
  • [10]

    J. J. Du, L. Varadi, P. A. Williams, P. W. Groundwater, J. Overgaard, J. A. Platts, D. E. Hibbs, An analysis of the experimental and theoretical charge density distributions of the piroxicam-saccharin co-crystal and its constituents. RSC Adv. 2016, 6, 81578.

    • Crossref
    • Export Citation
  • [11]

    C. Kalaiarasi, M. S. Pavan, P. Kumaradhas, Topological characterization of electron density, electrostatic potential and intermolecular interactions of 2-nitroimidazole: an experimental and theoretical study. Acta Crystallogr. B 2016, 72, 775.

    • Crossref
    • Export Citation
  • [12]

    I. L. Kirby, M. Brightwell, M. B. Pitak, C. Wilson, S. J. Coles, P. A. Gale, Systematic experimental charge density analysis of anion receptor complexes. Phys. Chem. Chem. Phys. 2014, 16, 10943.

    • Crossref
    • PubMed
    • Export Citation
  • [13]

    M. Malinska, Z. Dauter, Transferable aspherical atom model refinement of protein and DNA structures against ultrahigh-resolution X-ray data. Acta Crystallogr. D 2016, 72, 770.

    • Crossref
    • Export Citation
  • [14]

    R. Niranjana Devi, C. Jelsch, S. Israel, E. Aubert, C. Anzline, A. A. Hosamani, Charge density analysis of metformin chloride, a biguanide anti-hyperglycemic agent. Acta Crystallogr. B 2017, 73, 10.

    • Crossref
    • Export Citation
  • [15]

    A. Sirohiwal, V. R. Hathwar, D. Dey, R. Regunathan, D. Chopra, Characterization of fluorine-centred ‘F…O’ sigma-hole interactions in the solid state. Acta Crystallogr. B 2017, 73, 140.

    • Crossref
    • Export Citation
  • [16]

    B. Zarychta, A. Lyubimov, M. Ahmed, P. Munshi, B. Guillot, A. Vrielink, C. Jelsch, Cholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis. Acta Crystallogr. D 2015, 71, 954.

    • Crossref
    • Export Citation
  • [17]

    E. A. Zhurova, V. V. Zhurov, P. Kumaradhas, S. Cenedese, A. A. Pinkerton, Charge density and electrostatic potential study of 16alpha,17beta-estriol and the binding of estrogen molecules to the estrogen receptors ERalpha and ERbeta. J. Phys. Chem. B 2016, 120, 8882.

    • Crossref
    • PubMed
    • Export Citation
  • [18]

    E. F. Bertaut, L’énergie électrostatique de réseaux ioniques. J. Phys. Radium. 1952, 13, 499.

    • Crossref
    • Export Citation
  • [19]

    E. F. Bertaut, Electrostatic potential, fields and field gradients. J. Phys. Chem. Solids 1978, 39, 97.

    • Crossref
    • Export Citation
  • [20]

    R. F. Stewart, On the mapping of electrostatic properties from Bragg diffraction data. Chem. Phys. Lett. 1979, 65, 335.

    • Crossref
    • Export Citation
  • [21]

    M. A. Spackman, R. F. Stewart, Chemical applications of atomic and molecular electrostatic potentials, in Electrostatic Potentials in Crystals, (Eds. P. Politzer and D. G. Truhler) Plenum Press, New York, p. 407, 1981.

  • [22]

    M. A. Spackman, H.-P. Weber, Electrostatic potential in dehydrated sodium zeolite a from low-resolution X-ray diffraton data. J. Phys. Chem. 1988, 92, 794.

    • Crossref
    • Export Citation
  • [23]

    A. S. Brown, M. A. Spackman, The determination of electric field gradients from X-ray diffration data. Mol. Phys. 1994, 83, 551.

    • Crossref
    • Export Citation
  • [24]

    M. A. Spackman, Comment on on the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model by Volkov, King, Coppens and Farrugia (2006). Acta Crystallogr. A 2007, 63, 198.

    • Crossref
    • PubMed
    • Export Citation
  • [25]

    M. Franchini, P. Herman T. Philipsen, E. van Lenthe, L. Visscher, Accurate coulomb potentials for periodic and molecular systems through density fitting. J. Chem. Theory Comput. 2014, 10, 1994.

    • Crossref
    • PubMed
    • Export Citation
  • [26]

    H. Tanaka, Y. Kuroiwa, M. Tanaka, Electrostatic potential of ferroelectric PbTiO3: visualized electron polarization of Pb ion. Phys. Rev. B 2006, 74, 172105.

    • Crossref
    • Export Citation
  • [27]

    P. P. Ewald, Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Physik 1921, 64, 258.

  • [28]

    H. Tanaka, Y. Kuroiwa, M. Tanaka, A new method for evaluating the electrostatic potential by using a MEM X-ray diffraction analysis. J. Korean Phys. Soc. 2009, 55, 803.

    • Crossref
    • Export Citation
  • [29]

    K. Kato, H. Tanaka, Visualizing charge densities and electrostatic potentials in materials by synchrotron X-ray powder diffraction. Adv. Phys. X 2016, 1, 55.

  • [30]

    C. B. Hubschle, S. van Smaalen, The electrostatic potential of dynamic charge densities. J. Appl. Crystallogr. 2017, 50, 1627.

    • Crossref
    • PubMed
    • Export Citation
  • [31]

    S. van Smaalen, L. Palatinus, M. Schneider, The maximum-entropy method in superspace. Acta Crystallogr. A 2003, 59, 459.

    • Crossref
    • PubMed
    • Export Citation
  • [32]

    S. Mondal, S. J. Prathapa, S. van Smaalen, Experimental dynamic electron densities of multipole models at different temperatures. Acta Crystallogr. A 2012, 68, 568.

    • Crossref
    • PubMed
    • Export Citation
  • [33]

    V. Domnich, S. Reynaud, R. A. Haber, M. Chhowalla, Boron carbide: structure, properties, and stability under stress. J. Am. Cer. Soc. 2011, 94, 3605.

    • Crossref
    • Export Citation
  • [34]

    B. Albert, H. Hillebrecht, Boron: elementary challenge for experimenters and theoreticians. Angew. Chem. Int. Ed. 2009, 48, 8640.

    • Crossref
    • Export Citation
  • [35]

    K. Shirai, Phase diagram of boron crystals. Jpn. J. Appl. Phys. 2017, 56, 05FA06.

    • Crossref
    • Export Citation
  • [36]

    P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford University Press, Oxford, 1997.

  • [37]

    P. Becker, P. Coppens, About the coulomb potential in crystals. Acta Crystallogr. A 1990, 46, 254.

    • Crossref
    • PubMed
    • Export Citation
  • [38]

    S. Mondal, S. van Smaalen, A. Schonleber, Y. Filinchuk, D. Chernyshov, S. Simak, A. Mikhaylushkin, I. Abrikosov, E. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia, Electron-deficient and polycenter bonds in the high-pressure γ-B28 phase of boron. Phys. Rev. Lett. 2011, 106, 215502.

    • Crossref
    • PubMed
    • Export Citation
  • [39]

    S. Mondal, S. van Smaalen, G. Parakhonskiy, S. J. Prathapa, L. Noohinejad, E. Bykova, N. Dubrovinskaia, D. Chernyshov, L. Dubrovinsky, Experimental evidence of orbital order in α-B12 and γ-B28 polymorphs of elemental boron. Phys. Rev. B 2013, 88, 024118.

    • Crossref
    • Export Citation
  • [40]

    S. Mondal, E. Bykova, S. Dey, S. I. Ali, N. Dubrovinskaia, L. Dubrovinsky, G. Parakhonskiy, S. van Smaalen, Disorder and defects are not intrinsic to boron carbide. Scientific Reports 2016, 6, 19330.

    • Crossref
    • PubMed
    • Export Citation
  • [41]

    M. A. Spackman, P. G. Byrom, A novel definition of a molecule in a crystal. Chem. Phys. Lett. 1997, 267, 215.

    • Crossref
    • Export Citation
  • [42]

    J. J. McKinnon, A. S. Mitchell, M. A. Spackman, Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem. Eur. J. 1998, 4, 2136.

    • Crossref
    • Export Citation
  • [43]

    P. Politzer, J. S. Murray, Z. Preralta-Inga, Molecular surface electostatic potentials in relation to noncovalent interactions in biological systems. Int. J. Quantum Chem. 2001, 85, 676.

    • Crossref
    • Export Citation
  • [44]

    E. Nishibori, H. Hyodo, K. Kimura, M. Takata, Revisit: high resolution charge density study of α-rhombohedral boron using third-generation SR data at SPring-8. Solid State Sci. 2015, 47, 27.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Zeitschrift für Kristallographie – Crystalline Materials offers a place for researchers to present results of their crystallographic studies. The journal includes theoretical as well as experimental research. It publishes Original Papers, Letters and Review Articles in manifold areas of crystallography.

Search