High-throughput assessment of hypothetical zeolite materials for their synthesizeability and industrial deployability

Jose Luis Salcedo Perez 1 , Maciej Haranczyk 1 , 2  and Nils Edvin Richard Zimmermann 1
  • 1 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720 Berkeley, USA
  • 2 IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid, Spain
Jose Luis Salcedo Perez, Maciej Haranczyk
  • Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720 Berkeley, USA
  • IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid, Spain
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Nils Edvin Richard Zimmermann


Zeolites are important microporous framework materials, where 200+ structures are known to exist and many millions so-called hypothetical materials can be computationally created. Here, we screen the “Deem” database of hypothetical zeolite structures to find experimentally feasible and industrially relevant materials. We use established and existing criteria and structure descriptors (lattice energy, local interatomic distances, TTT angles), and we develop new criteria which are based on 5-th neighbor distances to T-atoms, tetrahedral order parameters (or, tetrahedrality), and porosity and channel dimensionality. Our filter funnel for screening the most attractive zeolite materials that we construct consists of nine different types of criteria and a total of 53 subcriteria. The funnel reduces the pool of candidate materials from initially >300,000 to 70 and 33, respectively, depending on the channel dimensionality constraint applied (2- and 3-dimensional vs. only 3-dimensional channels). We find that it is critically important to define longer range and more stringent criteria such as the new 5-th neighbor distances to T-atoms and the tetrahedrality descriptor in order to succeed in reducing the huge pool of candidates to a manageable number. Apart from four experimentally achieved structures (BEC, BOG, ISV, SSF), all other candidates are hypothetical frameworks, thus, representing most valuable targets for synthesis and application. Detailed analysis of the screening data allowed us to also propose an exciting future direction how such screening studies as ours could be improved and how framework generating algorithms could be competitively optimized.

  • [1]

    A. F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites. Kongl. Svenska Vet. Ac. Handl. 1756, 17, 120.

  • [2]

    E. M. Flanigen, R. W. Broach, S. T. Wilson, Introduction. in Zeolites in Industrial Separation and Catalysis, (Ed. Santi Kulprathipanja), Wiley-VCH, Weinheim, p. 1, 2010.

  • [3]

    S. Abate, K. Barbera, G. Centi, P. Lanzafame, S. Perathoner, Disruptive catalysis by zeolites. Catal. Sci. Technol. 2016, 6, 2485.

  • [4]

    K. Tanabe, W. F. Hölderich, Industrial application of solid acid-base catalysts. Appl. Catal. A 1999, 181, 399.

  • [5]

    P. Payra, P. K. Dutta, Zeolites: a primer. in Handbook of Zeolite Science and Technology, (Eds. S. M. Auerbach, K. A. Carrado, and P. K. Dutta) Marcel Dekker, Inc., New York, U.S.A., p. 1, 2003.

  • [6]

    M. E. Davis, R. F. Lobo, Zeolite and molecular sieve synthesis. Chem. Mater. 1992, 4, 756.

  • [7]

    N. Zheng, X. Bu, B. Wang, P. Feng, Microporous and photoluminescent chalcogenide zeolite analogs. Science 2002, 298, 2366.

  • [8]

    P. S. Wheatley, A. R. Butler, M. S. Crane, S. Fox, B. Xiao, A. G. Rossi, I. L. Megson, R. E. Morris, NO-releasing zeolites and their antithrombotic properties. J. Am. Chem. Soc. 2006, 128, 502.

  • [9]

    C. Baerlocher, L. B. McCusker, D. H. Olsen, Atlas of Zeolite Framework Types, 6th ed., Elsevier, Amsterdam, The Netherlands, 2007.

  • [10]

    C. Baerlocher, L. B. McCusker, Database of zeolite structures. http://www.iza-structure.org/databases. 2015.

  • [11]

    M. M. J. Treacy, K. H. Randall, S. Rao, J. A. Perry, D. J. Chadi, Enumeration of periodic tetrahedral frameworks. Z. Kristallogr. 1997, 212, 768.

  • [12]

    M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall, M. D. Foster, Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Microp. Mesopor. Mater. 2004, 74, 121.

  • [13]

    M. D. Foster, M. M. J. Treacy, Atlas of prospective zeolite structures. http://www.hypotheticalzeolites.net. 2016.

  • [14]

    M. W. Deem, R. Pophale, P. A. Cheeseman, D. J. Earl, Computational discovery of new zeolite-like materials. J. Phys. Chem. C 2009, 113, 21353.

  • [15]

    R. Pophale, P. A. Cheeseman, M. W. Deem, A database of new zeolite-like materials. Phys. Chem. Chem. Phys. 2011, 13, 12407.

  • [16]

    M. W. Deem, J. M. Newsame, Determination of 4-connected framework crystal structures by simulated annealing. Nature 1989, 342, 260.

  • [17]

    M. W. Deem, J. M. Newsame, Framework crystal structure solution by simulated annealing: test application to known zeolite structures. J. Am. Chem. Soc. 1992, 114, 7189.

  • [18]

    R. A. Curtis, M. W. Deem, A statistical mechanics study of ring size, ring shape, and the relation to pores found in zeolites. J. Phys. Chem. B 2003, 107, 8612.

  • [19]

    D. J. Earl, M. W. Deem, Toward a database of hypothetical zeolite structures. Ind. Eng. Chem. Res. 2006, 45, 5449.

  • [20]

    G. O. Brunner, Criteria for the evaluation of hypothetical zeolite frameworks. Zeolites 1990, 10, 612.

  • [21]

    V. A. Blatov, G. D. Ilyushin, D. M. Proserpio, The zeolite conundrum: why are there so many hypothetical zeolites and so few observed? A possible answer from the zeolite-type frameworks perceived as packings of tiles. Chem. Mater. 2013, 25, 412.

  • [22]

    M. D. Foster, O. Delgado Friedrichs, R. G. Bell, F. A. Almeida Paz, J. Klinowski, Structural evaluation of systematically enumerated hypothetical uninodal zeolites. Angew. Chem. Int. Ed. 2003, 42, 3896.

  • [23]

    M. D. Foster, O. Delgado Friedrichs, R. G. Bell, F. A. Almeida Paz, J. Klinowski, Chemical evaluation of hypothetical uninodal zeolites. J. Am. Chem. Soc. 2004, 126, 9769.

  • [24]

    M. D. Foster, A. Simperler, R. G. Bell, O. Delgado Friedrichs, F. A. Almeida Paz, J. Klinowski, Chemically feasible hypothetical crystalline networks. Nature Mater. 2004, 3, 234.

  • [25]

    M. A. Zwijnenburg, A. Simperler, S. A. Wells, R. G. Bell, Tetrahedral distortion and energetic packing penalty in “zeolite” frameworks: linked phenomena? J. Phys. Chem. B 2005, 109, 14783.

  • [26]

    A. Simperler, M. D. Foster, O. Delgado Friedrichs, R. G. Bell, F. A. Almeida Paz, J. Klinowskic, Hypothetical binodal zeolitic frameworks. Acta Crystallogr. B 2005, B61, 263.

  • [27]

    A. Sartbaeva, S. A. Wells, M. M. J. Treacy, M. F. Thorpe, The flexibility window in zeolites. Nature Mater. 2006, 5, 962.

  • [28]

    D. Majda, F. A. A. Paz, O. Delgado Friedrichs, M. D. Foster, A. Simperler, R. G. Bell, J. Klinowski, Hypothetical zeolitic frameworks: in search of potential heterogeneous catalysts. J. Phys. Chem. C 2008, 112, 1040.

  • [29]

    C. J. Dawson, V. Kapko, M. F. Thorpe, M. D. Foster, M. M. J. Treacy, Flexibility as an indicator of feasibility of zeolite frameworks. J. Phys. Chem. C 2012, 116, 16175.

  • [30]

    Y. Li, J. Yu, R. Xu, Criteria for zeolite frameworks realizable for target synthesis. Angew. Chem. Int. Ed. 2013, 52, 1673.

  • [31]

    X. Liu, S. Valero, E. Argente, V. Botti, G. Sastre, The importance of TTT angles in the feasibility of zeolites. Z. Kristallogr. 2015, 230, 291.

  • [32]

    J. Lu, L. Li, H. Cao, Y. Li, J. Yu, Screening out unfeasible hypothetical zeolite structures via the closest non-adjacent O…O pairs. Phys. Chem. Chem. Phys. 2017, 19, 1276.

  • [33]

    J.-R. Lu, C. Shi, Y. Li, J.-H. Yu, Accelerating the detection of unfeasible hypothetical zeolites via symmetric local interatomic distance criteria. Chin. Chem. Lett. 2017, 28, 1365.

  • [34]

    E. D. Kuznetsova, O. A. Blatova, V. A. Blatov, Predicting new zeolites: a combination of thermodynamic and kinetic factors. Chem. Mater. 2018, 30, 2829.

  • [35]

    G. Ceder, Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bullet. 2010, 35, 693.

  • [36]

    L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, B. Smit, In silico screening of carbon-capture materials. Nature Mater. 2012, 11, 633.

  • [37]

    A. Jain, S. P. Ong, G. Hautier, W. Chen, W. Davidson Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 2013.

  • [38]

    V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R. G. Bell, C. R. A. Catlow, Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 2015, 44, 7044.

  • [39]

    A. Jain, G. Hautier, S. P. Ong, K. Persson, New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J. Mater. Res. 2016, 31, 977.

  • [40]

    C. Draxl, M. Scheffler, NOMAD: the FAIR concept for big data-driven materials science. MRS Bullet. 2018, 43, 676.

  • [41]

    B. R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, L. M. Ghiringhelli, Uncovering structure-property relationships of materials by subgroup discovery. New J. Phys. 2017, 19, 013031.

  • [42]

    G. J. Kramer, A. J. M. de Man, R. A. van Santen, Zeolites versus aluminosilicate clusters: the validity of a local description. J. Am. Chem. Soc. 1991, 113, 6435.

  • [43]

    N. J. Henson, A. K. Cheetham, J. D. Gale, Theoretical calculations on silica frameworks and their correlation with experiment. Chem. Mater. 1994, 6, 1647.

  • [44]

    N. E. R. Zimmermann, M. Haranczyk, History and utility of zeolite framework-type discovery from a data-science perspective. Cryst. Growth Des. 2016, 6, 3043.

  • [45]

    M. J. Sanders, M. Leslie, C. R. A. Catlow, Interatomic potentials for SiO2. J. Chem. Soc. Chem. Commun. 1984, 19, 1271.

  • [46]

    M. Aykol, S. S. Dwaraknath, W. Sun, K. A. Persson, Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 2018, 4, eaaq0148.

  • [47]

    N. E. R. Zimmermann, B. Vorselaars, D. Quigley, B. Peters, Nucleation of NaCl from aqueous solution: critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc. 2015, 137, 13352.

  • [48]

    W. Vermeiren, J.-P. Gilson, Impact of zeolites on the petroleum and petrochemical industry. Top. Catal. 2009, 52, 1131.

  • [49]

    J. D. Gale, GULP: capabilities and prospects. Z. Kristallogr. 2005, 220, 552.

  • [50]

    M. Mazur, P. S. Wheatley, M. Navarro, W. J. Roth, M. Položij, A. Mayoral, P. Eliášová, P. Nachtigall, J. Čejka, R. E. Morris, Synthesis of ‘unfeasible’ zeolites. Nature Chem. 2016, 8, 58.

  • [51]

    S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, G. Ceder, Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci. 2013, 68, 314.

  • [52]

    pymatgen’s GitHub repository. https://github.com/materialsproject/pymatgen. 2011.

  • [53]

    G. Sastre, J. D. Gale, ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes. Microp. Mesopor. Mater. 2001, 43, 27.

  • [54]

    T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microp. Mesopor. Mater. 2012, 149, 134.

  • [55]

    F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennard, W. D. S. Motherwell, J. R. Rodgers, D. G. Watson, The Cambridge Crystallographic Data Center: computer-based search, retrieval, analysis and display of information. Acta Crystallogr. B 1979, 35, 2331.

  • [56]

    U.S. Department of Energy Office of Science User Facility: National Energy Research Scientifc Computing Center (NERSC). https://www.nersc.gov/. 2019.

  • [57]

    C. Li, M. Moliner, A. Corma, Building zeolites from precrystallized units: nanoscale architecture. Angew. Chem. Int. Ed. 2018, 57, 15330.

  • [58]

    P. S. Wheatley, J. Čejka, R. E. Morris, Synthesis of zeolites using the ADOR (Assembly-Disassembly-Organization-Reassembly) route. J. Vis. Exp. 2016, 110, 53463.

  • [59]

    S. A. Morris, G. P. M. Bignami, Y. Tian, M. Navarro, D. S. Firth, J. Čejka, P. S. Wheatley, D. M. Dawson, W. A. Slawinski, D. S. Wragg, R. E. Morris, S. E. Ashbrook, In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6. Nature Chem. 2017, 9, 1012.

  • [60]

    V. Kapko, C. Dawson, M. M. J. Treacy, M. F. Thorpe, Flexibility of ideal zeolite frameworks. Phys. Chem. Chem. Phys. 2010, 12, 8531.

  • [61]

    V. Kapko, C. Dawson, I. Rivin, M. M. J. Treacy, Density of mechanisms within the flexibility window of zeolites. Phys. Rev. Lett. 2011, 107, 164304.

  • [62]

    M. M. J. Treacy, C. J. Dawson, V. Kapko, I. Rivin, Flexibility mechanisms in ideal zeolite frameworks. Philos. Trans. Royal Soc. A 2014, 372, 20120036.

  • [63]

    T. Conradsson, M. S. Dadachov, X. D. Zou, Synthesis and structure of (Me3N)6[Ge32O64](H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microp. Mesopor. Mater. 2000, 41, 183.

  • [64]

    J. J. Pluth, J. V. Smith, Crystal structure of boggsite, a new high-silica zeolite with the first three-dimensional channel system bounded by both 12- and 10-rings. Am. Mineral. 1990, 75, 501.

  • [65]

    L. A. Villaescusa, P. A. Barrett, M. A. Camblor, ITQ-7: a new pure silica polymorph with a three-dimensional system of large pore channels. Angew. Chem. Int. Ed. 1999, 38, 1997.

  • [66]

    S. Elomari, A. W. Burton, K. Ong, A. R. Pradhan, I. Y. Chan, Synthesis and structure solution of zeolite SSZ-65. Chem. Mater. 2007, 19, 5485.

  • [67]

    J. A. Martens, P. A. Jacobs, Phosphate-based zeolites and molecular sieves. in Catalysis and Zeolites – Fundamentals and Applications, (Eds. J. Weitkamp and L. Puppe), Springer-Verlag, Berlin, p. 53, 1999.

  • [68]

    J.-L. Guth, H. Kessler, Synthesis of aluminosilicate zeolites and related silica-based materials. in Catalysis and Zeolites – Fundamentals and Applications, (Eds. J. Weitkamp and L. Puppe). Springer-Verlag, Berlin, p. 1, 1999.

  • [69]

    E. M. Flanigen, B. M. Lok, R. L. Patton, S. T. Wilson, Aluminophosphate molecular sieves and the periodic table. in New Developments in Zeolite Science and Technology, Proc. 7th Int. Zeolite Conf., Tokyo, Japan, 1986. (Eds. Y. Murakami, A. Iijima, and J. W. Ward), Elsevier Science Publishers B. V., Amsterdam, The Netherlands, p. 103, 1986.

  • [70]

    J. M. Bennett, W. J. Dytrych, J. J. Pluth, J. W. Richardson Jr., J. V. Smith, Structural features of aluminophosphate materials with AlP=1. Zeolites 1986, 6, 349.

  • [71]

    B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, E. M. Flanigen, Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 1984, 106, 6092.

  • [72]

    P. Tian, Y. Wei, M. Ye., Z. Liu, Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 2015, 5, 1922.

  • [73]

    J. V. Smith, J. M. Bennett, Enumeration of 4-connected 3-dimensional nets and classification of framework silicates: the infinite set of ABC-6 nets; the Archimedean and σ-related nets. Am. Mineral. 1981, 66, 777.

  • [74]

    Y. Li, X. Li, J. Liu, F. Duan, J. Yu, In silico prediction and screening of modular crystal structures via a high-throughput genomic approach. Nature Commun. 2015, 6, 8328.

  • [75]

    H. F. Inman, E. L. Bradley Jr., The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. Commun. Statist. Theory Meth. 1989, 18, 3851.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Journal + Issues

Zeitschrift für Kristallographie – Crystalline Materials offers a place for researchers to present results of their crystallographic studies. The journal includes theoretical as well as experimental research. It publishes Original Papers, Letters and Review Articles in manifold areas of crystallography.