The Two Centre Dirac Equation

Berndt Müller 1  and Walter Greiner 1
  • 1 Institut für Theoretische Physik der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany and Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut, USA

During collisions of heavy ions with heavy targets below the Coulomb barrier, adiabatic molecular orbitals are formed for the inner electrons. Deviations from adiabaticity lead to coupling between various states and can be treated by time-dependent perturbation theory. For high charges ( Z1+Z2 ≧ 60) the molecular electrons are highly relativistic. Therefore, the Dirac equation has to be used to obtain the energies and wave functions. The Dirac Hamiltonian is transformed into the intrinsic rotating coordinate system where prolate spheroidal coordinates are introduced. A set of basis functions is proposed which allows the evaluation of all matrix elements of the Dirac Hamiltonian analytically. The resulting matrix is diagonalized numerically. The finite nuclear charge distribution is also taken into account. Results are presented and discussed for various characteristic systems, e. g. Br-Br, Ni-Ni, I-I, Br-Zr, I-Au, U -U, etc.

If the inline PDF is not rendering correctly, you can download the PDF file here.


Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.