Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 2, 2014

Effect of Anisotropy on the Critical Behaviour of Three- Dimensional Heisenberg Ferromagnets

  • R. Shanker and R. A. Singh

The anisotropic nearest-neighbour Heisenberg model for the simple cubic lattice has been investigated by interpolating the anisotropy between the Ising and isotropic Heisenberg limits via general spin high-temperature series expansions of the zero-field suspectibility. This is done by estimating the critical temperature (Tc(3)) and the susceptibility exponent γ from the analysis of the series by the Ratio and Pade approximants methods. It is noted that Tc(3) varies with anisotropy while γ is almost the same for the anisotropic system, and a jump in it occurs for the isotropic case in agreement with the universality hypothesis. The effect of anisotropy on the susceptibility is also shown. Further, it is seen that estimates of γ for the two extreme limits agree well with those of previous theoretical as well as experimental investigations. In addition, critical temperatures have been summarised in a relation, and expressions for the magnetisation have been derived.

Received: 1975-9-15
Published Online: 2014-6-2
Published in Print: 1976-1-1

© 1946 – 2014: Verlag der Zeitschrift für Naturforschung

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/zna-1976-0104/html
Scroll to top button