Theoretical Study of Geometries, Stabilities, and Electronic Properties of Cationic (FeS)n+ (n = 1–5) Clusters

A. Li-Ta 1 , Zhang Yu 2 , Bai Jian-Ping 2 , Zhang Shuai 2 , Li Gen-Quan 2 , Chen Shan-Jun 3  and Tian Yong-Hong 3
  • 1 Chemistry and Chemical Engineering College, Inner Mongolia University for the Nationalities, Tongliao 028043, China
  • 2 Department of Physics, Nanyang Normal University, Nanyang 473061, China
  • 3 Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
A. Li-Ta, Zhang Yu, Bai Jian-Ping, Zhang Shuai, Li Gen-Quan, Chen Shan-Jun and Tian Yong-Hong

Abstract

We have performed unbiased searches for the global minimum structures of (FeS)n+ (n=1–5) clusters using the CALYPSO method combined with density functional theory geometric optimisation. A large number of low-lying isomers are optimised at the B3PW91/6-311+G* theory level. Accurate ab initio calculations and harmonic vibrational analyses are undertaken to ensure that the optimised geometries are true minimum. They show that the most stable structures begin to exhibit three-dimensional (3D) configurations at n=3. The relative stabilities of (FeS)n+ clusters for the ground-state structures are analysed on the basis of binding energies and HOMO-LUMO gaps. The theoretical results indicate that the binding energies of (FeS)n+ tend to increase with cluster size. The maxima of HOMO-LUMO gaps (3.88 eV) for the most stable configurations appear at (FeS)+. Moreover, we have found that the (FeS)2+ cluster possesses the lowest local magnetic moments compared to the other species. The origin of this magnetic phenomenon is also analysed in detail.

  • [1]

    J. Ulises Reveles and S. N. Khanna, Phys. Rev. B 72, 165413 (2005).

    • Crossref
    • Export Citation
  • [2]

    T. V. Harris and R. K. Szilagyi, J. Comput. Chem. 35, 540 (2014).

  • [3]

    L. Ma, J. G. Wang, Y. Y. Hao, and G. H. Wang, Comp. Mater. Sci. 68, 166 (2013).

  • [4]

    L. P. Ding, X. Y. Kuang, P. Shao, and M. M. Zhong, J. Alloy. Compd. 573, 133 (2013).

  • [5]

    A. T. P. Carvalho, A. F. S. Teixeira, and M. J. Ramos, J. Comput. Chem. 34, 1540 (2013).

  • [6]

    J. H. Kim, J. R. Bothe, R. O. Frederick, J. C. Holder, and J. L. Markley, J. Am. Chem. Soc. 136, 7933 (2014).

  • [7]

    R. Lill, Nature 460, 831 (2009).

  • [8]

    D. Rickard and G. W. Luther, Chem. Rev. 107, 514 (2007).

  • [9]

    C. Binda, A. Coda, A. Aliverti, G. Zanetti, and A. Mattevi, Acta. Cryst. D 54, 1353 (1998).

    • Crossref
    • Export Citation
  • [10]

    P. J. Kiley and H. Beinert, Curr. Opin. Microbiol. 6, 181 (2003).

  • [11]

    G. H. Stout, S. Turley, L. C. Sieker, and L. H. Jensen, Proc. Natl. Acad. Sci. 85, 1020 (1988).

  • [12]

    H. Beinert, FASEB J 4, 2483 (1990).

  • [13]

    P. J. Mitchell, Biochem. 97, 1 (1985).

  • [14]

    A. L. Han, T. Yagi, and T. Hatefi, Arch. Biochem. Biophys. 275, 166 (1989).

  • [15]

    H. Beinert, M. C. Kennedy, and C. D. Stout, Chem. Rev. 96, 2335 (1996).

    • PubMed
    • Export Citation
  • [16]

    O. A. Lukianova and S. S. David, Curr. Opin. Chem. Biol. 9, 145 (2005).

    • PubMed
    • Export Citation
  • [17]

    E. M. Maes, M. J. Knapp, R. S. Czernuszewicz, and D. N. Hendrickson, J. Phys. Chem. B 104, 10878 (2000).

    • Crossref
    • Export Citation
  • [18]

    H. J. Zhai, B. Kiran, and L. S. Wang, J. Phys. Chem. A 107, 2821 (2003).

    • Crossref
    • Export Citation
  • [19]

    A. Nakajima, T. Hayase, F. Hayakawa, and K. Kaya, Chem. Phys. Lett. 208, 381 (1997).

  • [20]

    D. O. Hayward and B. M. W. Trapnell, Chemisorption (2nd ed.), Butterworths, London 1964.

  • [21]

    Z. D. Yu, N. Zhang, X. J. Wu, Z. Gao, Q. Zhu, and F. N. Kong, J. Chem. Phys. 99, 1765 (1993).

  • [22]

    R. L. Whetten, D. M. Cox, D. J. Trevorand, and A. Kaldor, J. Phys. Chem. 89, 566 (1985).

  • [23]

    J. Lv, Y. C. Wang, L. Zhu, and Y. M. Ma, J. Chem. Phys. 137, 084104 (2012).

  • [24]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Phys. Rev. B 82, 094116 (2010).

    • Crossref
    • Export Citation
  • [25]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Comput. Phys. Commun. 183, 2063 (2012).

  • [26]

    Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, H. Y. Liu, and Y. M. Ma, J. Chem. Phys. 137, 224108 (2012).

  • [27]

    L. Zhu, H. Y. Liu, C. J. Pickard, G. T. Zou, and Y. M. Ma, Nature Chem. 6, 644 (2014).

  • [28]

    S. H. Lu, Y. C. Wang, H. Y. Liu, M. S. Miao, and Y. M. Ma, Nature Commun. 5, 3666 (2014).

  • [29]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., GAUSSIAN 09 (Revision C.01), Gaussian, Inc., Pittsburgh, PA 2009.

  • [30]

    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

  • [31]

    C. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    • Crossref
    • Export Citation
  • [32]

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

  • [33]

    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

  • [34]

    J. P. Perdew, P. Ziesche, and H. Eschrig, Electronic Structure of Solids, Akademie Verlag, Berlin 1991.

  • [35]

    J. N. Harvey, C. Heinemann, A. Fiedler, D. Schroder, and H. Schwarz, Chem. Eur. J. 2, 1230 (1996).

  • [36]

    T. J. MacMahon, T. C. Jackson, and B. S. Freiser, J. Am. Chem. Soc. 111, 422 (1989).

  • [37]

    R. F. Barrow and C. Cousins, Adv. High. Temp. Chem. 4, 161 (1971).

  • [38]

    T. C. Devore and H. F. Franzen, High. Temp. Sci. 7, 220 (1975).

  • [39]

    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constant of Diatomic Molecules, Van Nostrand Reinhold, New York 1974.

  • [40]

    N. Zhang, T. Hayase, H. Kawamata, K. Nakao, A. Nakajima, and K. Kaya, J. Chem. Phys. 104, 3413 (1996).

  • [41]

    A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).

  • [42]

    T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012).

  • [43]

    T. Lu and F. W. Chen, J. Mol. Graph. Model. 38, 314 (2012).

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search