Study of the Geometric Structures, Electronic and Magnetic Properties of Aluminium-Antimony Alloy Clusters

Ai-Jie Mao 1 , Xiao-Yu Kuang 1 , Hao Cheng 1 , Li-Huan Zhang 1  and Xiao-Rong Cheng 1
  • 1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, PR China
Ai-Jie Mao
  • Corresponding author
  • Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, PR China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Xiao-Yu Kuang, Hao Cheng, Li-Huan Zhang and Xiao-Rong Cheng

Abstract

A joint investigation based on an unbiased CALYPSO structure searching method and density functional theory calculation is performed to obtain the most stable structures of the neutral and anionic AlnSb (n = 1–16) clusters. The relative stability analysis reveals that the Al3Sb, Al5Sb, Al5Sb and Al14Sb clusters are more stable than their neighbouring clusters. The studies of electronic properties, especially in the consistency of the simulated photoelectron spectra and the experimental results for small clusters, further confirm that the predicted most stable structures are the global minima. Compared with pure aluminium (Al) clusters, the effect of impurity Sb atom on structural evolution of the neutral and anionic AlnSb(n = 1–16) clusters may be neglected, revealing that the most stable structures can be obtained by replacing one Al atom with an Sb atom in the corresponding neutral and anionic Aln+1(n = 1–16) clusters except for 8, 11 and 12. Moreover, the discussion concerning the magnetic properties indicates that the 3p state of the Al atom in the neutral and anionic AlnSb(n = 1–16) clusters is the main contributor to the total magnetic moment.

    • Supplementary Material
  • [1]

    X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, et al., J. Phys. Chem. C 120, 677 (2016).

    • Crossref
    • Export Citation
  • [2]

    X. D. Xing, J. J. Wang, X. Y. Kuang, X. X. Xia, C. Lu, et al., Phys. Chem. Chem. Phys. 18, 26177 (2016).

    • Crossref
    • PubMed
    • Export Citation
  • [3]

    B. Zhu, D. Die, R. C. Li, H. Lan, B. X. Zheng, et al., J. Alloy Comp. 696, 402 (2017).

    • Crossref
    • Export Citation
  • [4]

    D. Die, B. X. Zheng, L. Q. Zhao, Q. W. Zhu, and Z. Q. Zhao, Sci. Rep-UK. 6, 31978 (2016).

    • Crossref
    • Export Citation
  • [5]

    X. Li, B. Kiran, J. Li, H. J. Zhai, and L. S. Wang, Angew. Chem. Int. Ed. 24, 4786 (2002).

  • [6]

    P. Pyykkö and N. Runeberg, Angew. Chem. 41, 2174 (2002).

    • Crossref
    • Export Citation
  • [7]

    H. J. Zhai, J. Li, and L. S. Wang, J. Chem. Phys. 121, 8369 (2004).

  • [8]

    Y. Gao, S. Bulusu, and X. C. Zeng, Chem. Phys. Chem. 11, 2275 (2006).

  • [9]

    Y. Gao, N. Shao, and X. C. Zeng, J. Chem. Phys. 129, 084703 (2008).

  • [10]

    J. L. Wang, J. L. Bai, J. Jellinek, and X. C. Zeng, J. Am. Chem. Soc. 129, 4110 (2007).

    • Crossref
    • PubMed
    • Export Citation
  • [11]

    U. Landman, R. N. Barnett, A. G. Scherbakov, and P. Avouris, Phys. Rev. Lett. 85, 1958 (2000).

    • Crossref
    • PubMed
    • Export Citation
  • [12]

    F. Zhang, Y. Wang, and M. Y. Chou, J. Phys. Chem. C 116, 18663 (2012).

    • Crossref
    • Export Citation
  • [13]

    L. Wang, J. J. Zhao, Z. Zhou, S. B. Zhang, and Z. F. Chen, J. Comput. Chem. 30, 2509 (2009).

    • Crossref
    • PubMed
    • Export Citation
  • [14]

    A. X. Li, L. Guo, and X. Y. An, Russ. J. Phys. Chem. A 90, 72 (2016).

    • Crossref
    • Export Citation
  • [15]

    D. E. Bergeron, A. W. Castleman Jr., T. Morisato, and S. N. Khanna, Science 304, 84 (2004).

    • Crossref
    • PubMed
    • Export Citation
  • [16]

    D. E. Bergeron and A. W. Castleman Jr., Chem. Phys. Lett. 371, 189 (2003).

    • Crossref
    • Export Citation
  • [17]

    D. E. Bergeron, P. J. Roach, A. W. Castleman Jr., N. O. Jones, and S. N. Khanna, Science 307, 231 (2005).

    • Crossref
    • PubMed
    • Export Citation
  • [18]

    L. Guo, J. Phys. Chem. A. 117, 3458 (2013).

  • [19]

    X. An, L. Guo, N. Ren, C. Wen, X. Dong, et al., J. Struct. Chem. 56, 608 (2015).

    • Crossref
    • Export Citation
  • [20]

    X. Li, H. B. Wu, X. B. Wang, and L. S. Wang, Phys. Rev. Lett. 81, 1909 (1998).

    • Crossref
    • Export Citation
  • [21]

    J. Chen, Z. X. Luo, and J. N. Yao, J. Phys. Chem. A. 120, 3950 (2016).

    • PubMed
    • Export Citation
  • [22]

    B. Molina, J. R. Soto, and J. J. Castro, J. Phys. Chem. C 116, 9290 (2012).

    • Crossref
    • Export Citation
  • [23]

    X. Li and L. S. Wang, Phys. Rev. B 65, 15304 (2002).

  • [24]

    Z. X. Luo, C. J. Grover, A. C. Reber, S. N. Khanna, and A. W. Castleman Jr., J. Am. Chem. Soc. 135, 4307 (2013).

    • Crossref
    • PubMed
    • Export Citation
  • [25]

    Y. W. Hua, Y. L. Liu, G. Jiang, J. G. Du, and J. Chen, J. Phys. Chem. A 117, 2590 (2013).

    • Crossref
    • PubMed
    • Export Citation
  • [26]

    X. Zhang, B. X. Li, Z. W. Ma, and J. J. Gu, Sci. World J. 2013, 468327 (2013).

  • [27]

    J. J. Melko, P. A. Clayborne, C. E. Jones Jr., J. U. Reveles, U. Gupta, et al., J. Phys. Chem. A 114 2045 (2010).

    • Crossref
    • PubMed
    • Export Citation
  • [28]

    Y. H. Zeng, Z. N. Chen, H. J. Kang, X. J. Wang, and T. M. Wang, Special Casting Nonferrous Alloys 10, 1139 (2017).

  • [29]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Comput. Phys. Commun. 183, 2063 (2012).

    • Crossref
    • Export Citation
  • [30]

    J. Lv, Y. C. Wang, L. Zhu, and Y. M. Ma, J. Chem. Phys. 137, 084104 (2012).

  • [31]

    Y. C. Wang, M. S. Miao, J. Lv, L. Zhu, K. T. Yin, et al., J. Chem. Phys. 137, 224108 (2012).

    • Crossref
    • PubMed
    • Export Citation
  • [32]

    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, Phys. Rev. B82, 094116 (2010).

  • [33]

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., Gaussian 03 Revision E.01, Gaussian, Inc., Wallingford, CT 2004.

  • [34]

    A. D. Becke, Phys. Rev. A 38, 3098 (1988).

  • [35]

    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, et al., Phys. Rev. B46, 6671 (1992).

  • [36]

    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, et al., Phys. Rev. B48, 4978 (1993).

  • [37]

    J. P. Perdew, K. Burke, and Y. Yang, Phys. Rev. B54, 16533 (1996).

  • [38]

    J. P. Perdew, K. Burke, and Y. Yang, Phys. Rev. B57, 14999 (1998).

  • [39]

    A. J. Mao, X. Y. Kuang, G. Chen, and C. Zhang, Mol. Phys. 110, 2993 (2012).

    • Crossref
    • Export Citation
  • [40]

    X. X. Xia, X. Y. Kuang, C. Lu, Y. Y. Jin, X. D. Xing, et al., J. Phys. Chem. A 120, 7947 (2016).

    • Crossref
    • PubMed
    • Export Citation
  • [41]

    S. Paranthaman, K. Y. Hong, J. H. Kim, D. E. Kim, and T. K. Kim, J. Phys. Chem. A 117, 9293 (2013).

    • Crossref
    • PubMed
    • Export Citation
  • [42]

    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).

  • [43]

    D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10, 5207 (2008).

  • [44]

    T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012).

  • [45]

    J. W. Jia, D. D. Liu, A. J. Mao, X. X. Xia, X. Y. Kuang, et al., Mol. Phys. 115, 3033 (2017).

    • Crossref
    • Export Citation
  • [46]

    B. X. Li, Z. W. Ma, and Q. F. Pan, J. Clust. Sci. 27, 1041 (2016).

    • Crossref
    • Export Citation
  • [47]

    L. Ma, B. V. Issendorff, and A. Aguado, J. Chem. Phys. 132, 104303 (2010).

  • [48]

    R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York 1989.

  • [49]

    M. Alipour and A. Mohajeri, J. Phys. Chem. A. 114, 12709 (2010).

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. In accordance with the name of the journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena.

Search