A consistent model for the key complex in chronic beryllium disease

Raphael J.F. Berger 1 , Pär Håkansson 2 ,  and Raúl Mera-Adasme 3
  • 1 Department for Chemistry and Physics of Materials, Universität Salzburg, Jakob-Haringer-Str.2 a, A-5020 Salzburg, Austria
  • 2 NMR Research Unit, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland
  • 3 Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago de Chile, Chile
Raphael J.F. Berger
  • Corresponding author
  • Department for Chemistry and Physics of Materials, Universität Salzburg, Jakob-Haringer-Str.2 a, A-5020 Salzburg, Austria
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Pär Håkansson and Raúl Mera-Adasme
  • Corresponding author
  • Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago de Chile, Chile
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

A hypothesis on the structure of the key complex in chronic beryllium disease (CBD) is discussed with respect to the current knowledge on CBD, and with respect to the constraints implied by the coordination chemistry of beryllium and experimental data on the engaged protein complexes. The structure hypothesis is based on the [Be4O]6+ moiety as a coordination center, which is also found in the so called “basic beryllium carboxylates”. The structure of a small molecular model, optimized at the DFT level of theory, is used to compare the structural demands of this coordination center with a structure of the in vitro model of a beryllium immunoprotein complex determined previously by protein crystallography (Clayton & al., Cell2014, 158, 132). 9Be NMR chemical shielding values, quadrupole coupling constants and asymmetry parameters (η) have been calculated.

    • Supplementary material
  • [1]

    B. G. Naik, N. Sivasubramanian, Miner. Process. Extr. Metall. Rev. 1994, 13, 243–251.

    • Crossref
    • Export Citation
  • [2]

    A. Singh, Miner. Process. Extr. Metall. Rev. 1994, 13, 177–192.

    • Crossref
    • Export Citation
  • [3]

    R. J. F. Berger, S. M. A., J. Jusélius, D. Sundholm, P. Sirsch, H. Schmidbaur, Z. Naturforsch., B: J. Chem. Sci. 2001, 56b, 979–989.

  • [4]

    W. W. Porter, A. Wong-Foy, A. Dailly, A. J. Matzger, J. Mater. Chem. 2009, 19, 6489–6491.

    • Crossref
    • Export Citation
  • [5]

    S. Hausdorf, F. Baitalow, T. Böhle, D. Rafaja, F. O. R. L. Mertens, J. Am. Chem. Soc. 2010, 132, 10978–10981, PMID: 20698648.

    • Crossref
    • PubMed
    • Export Citation
  • [6]

    S. S. Han, W.-Q. Deng, W. A. Goddard III, Angew. Chem., Int. Ed. 2007, 46, 6289–6292.

    • Crossref
    • Export Citation
  • [7]

    M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433–11456.

  • [8]

    D. Naglav, M. R. Buchner, G. Bendt, F. Kraus, S. Schulz, Angew. Chem., Int. Ed. 2016, 55, 10562–10576.

    • Crossref
    • Export Citation
  • [9]

    A. P. Fontenot, Ann. Am. Thorac. Soc. 2018, 15, S81–S85, PMID: 29676647.

    • Crossref
    • PubMed
    • Export Citation
  • [10]

    A. P. Fontenot, M. T. Falta, J. W. Kappler, S. Dai, A. S. McKee, J. Immunol. 2016, 196, 22–27.

    • Crossref
    • PubMed
    • Export Citation
  • [11]

    L. S. Newman, J. Lloyd, E. Daniloff, Environ. Health Perspect. 1996, 104, 937–943.

    • PubMed
    • Export Citation
  • [12]

    G. M. Clayton, Y. Wang, F. Crawford, A. Novikov, B. T. Wimberly, J. S. Kieft, M. T. Falta, N. A. Bowerman, P. Marrack, A. P. Fontenot, S. Dai, J. W. Kappler, Cell (Cambridge, MA, U.S.A.) 2014, 158, 132–142.

    • Crossref
    • Export Citation
  • [13]

    K. Steenland, E. Ward, J. Natl. Cancer Inst. 1991, 83, 1380–1385.

  • [14]

    L. C. Perera, O. Raymond, W. Henderson, P. J. Brothers, P. G. Plieger, Coord. Chem. Rev. 2017, 352, 264–290.

    • Crossref
    • Export Citation
  • [15]

    M. R. Buchner, Chem. Eur. J. 2019, 25, 12018–12036.

  • [16]

    M. Müller, M. R. Buchner, Chem. Eur. J. 2019, 25, 16257–16269.

    • Crossref
    • Export Citation
  • [17]

    Y. Wang, S. Dai, Immunol. Res. 2013, 55, 83–90.

  • [18]

    S. De, G. Sabu, M. Zacharias, Phys. Chem. Chem. Phys. 2020, 22, 799–810.

  • [19]

    R. J. F. Berger, R. Mera-Adasme, Z. Naturforsch. B: J. Chem. Sci. 2016, 71b, 71–75.

  • [20]

    A. P. Fontenot, T. S. Keizer, M. McCleskey, D. G. Mack, R. Meza-Romero, J. Huan, D. M. Edwards, Y. K. Chou, A. A. Vandenbark, B. Scott, G. G. Burrows, J. Immunol. 2006, 177, 3874–3883.

    • Crossref
    • PubMed
    • Export Citation
  • [21]

    G. Lombardi, C. Germain, J. Uren, M. T. Fiorillo, R. M. du Bois, W. Jones-Williams, C. Saltini, R. Sorrentino, R. Lechler, J. Immunol. 2001, 166, 3549–3555.

    • Crossref
    • PubMed
    • Export Citation
  • [22]

    S. Dai, G. A. Murphy, F. Crawford, D. G. Mack, M. T. Falta, P. Marrack, J. W. Kappler, A. P. Fontenot, Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 7425–7430.

    • Crossref
    • PubMed
    • Export Citation
  • [23]

    M. T. Falta, C. Pinilla, D. G. Mack, A. N. Tinega, F. Crawford, M. Giulianotti, R. Santos, G. M. Clayton, Y. Wang, X. Zhang, L. A. Maier, P. Marrack, J. W. Kappler, A. P. Fontenot, J. Exp. Med. 2013, 210, 1403–1418.

    • Crossref
    • PubMed
    • Export Citation
  • [24]

    R. J. F. Berger, S. Jana, R. Fröhlich, N. W. Mitzel, Z. Naturforsch. B: J. Chem. Sci. 2011, 66b, 1131–1135.

  • [25]

    R. Ahlrichs, F. Furche, C. Hättig, TURBOMOLE (version 7.2.) University of Karlsruhe, Karlsruhe (Germany) 2015; available from http://www.turbomole.com.

  • [26]

    R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162–169.

  • [27]

    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396–1396.

  • [28]

    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.

    • Crossref
    • PubMed
    • Export Citation
  • [29]

    S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456–1465.

    • Crossref
    • Export Citation
  • [30]

    A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 123, 154101.

  • [31]

    E. R. Johnson, A. D. Becke, J. Chem. Phys. 2005, 123, 024101.

  • [32]

    O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346–354.

  • [33]

    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

  • [34]

    M. Kollwitz, J. Gauss, Chem. Phys. Lett. 1996, 260, 639–646.

    • Crossref
    • Export Citation
  • [35]

    P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511–518.

    • Crossref
    • Export Citation
  • [36]

    P. Schwerdtfeger, M. Pernpointner, W. Nazarewicz, in Calculation of NMR and EPR Parameters, (Eds.: M. Kaupp, M. Bühl and V. G. Malkin), John Wiley & Sons, Ltd, Weinheim, Germany, 2004, 17, p. 279–291. doi:.

    • Crossref
    • Export Citation
  • [37]

    P. Håkansson, Phys. Chem. Chem. Phys. 2017, 19, 10237–10254.

  • [38]

    K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I. M. Høyvik, M. F. Iozzi, B. Jansík, H. J. A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. S. de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, H. Ågren, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 269–284.

    • PubMed
    • Export Citation
  • [39]

    J. Kowalewski, L. Mäler, Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications, Taylor & Francis Group, New York, 2006.

  • [40]

    P. Håkansson, T. Boirin, J. Vaara, Langmuir 2018, 34, 3755–3766.

  • [41]

    B. Rupp, Personal Communication.

  • [42]

    J. Brandstetter, Personal Communication.

  • [43]

    P. G. Plieger, K. D. John, T. S. Keizer, T. M. McCleskey, A. K. Burrell, R. L. Martin, J. Am. Chem. Soc. 2004, 126, 14651–14658, PMID: 15521785.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Zeitschrift für Naturforschung B is an international scientific journal which publishes original papers, microreviews, and letters from all areas of inorganic chemistry, solid state chemistry, coordination chemistry, molecular chemistry, and organic chemistry.

Search