Which Polypeptides Are Characteristic for Photosystem II? Analysis of Active Photosystem II Particles from the Blue-Green Alga Anacystis nidulans

Friederike Koenig 1  and Leo P. Vernon 1
  • 1 Brigham Young University, Research Division, Provo, Utah, USA

A thylakoid membrane preparation isolated from the blue-green alga Anacystis nidulans was freed from carboxysomes, soluble enzymes and the pigment P750 by floating in a discontinuous sucrose density gradient. In a buffer containing sucrose and the zwitterionic detergent Miranol S2M-SF the thylakoids were loaded on a linear 10-18% sucrose density gradient which also contained Miranol. The sedimentation yielded three bands, the lower two of which were green and the upper one was orange. The light green band in the middle of the gradient was the only one to show any photosystem II activity. This was measured as light-induced electron transport from diphenylcarbazide (DPC) to dichlorophenol-indophenol (DCPIP). The activity was sensitive to dichlorophenyl-dimethylurea (DCMU).

The red absorption maximum of the particles in this middle band - henceforth called photosystem II particles - was found at 672 nm and the maximum of their low temperature fluorescence emission spectrum at 685 nm upon excitation with blue light. Cytochrome b559 was the only cytochrome found in these particles; it was present at an average ratio of one molecule cytochrome per 40 -50 molecules chlorophyll a. C550 photoreduction with accompanying photooxidation of cytochrome b559 was also observed in the photosystem II particles. Good photosystem II preparations did not contain any detectable amounts of P 700.

By means of sodium dodecylsulfate polyacrylamide gel electrophoresis the polypeptide composition of the photosystem II particles was studied. Dissolution of the chlorophyll protein complexes was done under strongly denaturing conditions; consequently, no green bands were observed on the gels. The polypeptide pattern of the photosystem II particles showed two strong predominant bands of protein components with apparent molecular weights (app. mol. wts.) of about 50 000 and 48 000. These two bands are unique for photosystem II. Two other weaker bands were also found characteristic for photosystem II, the band of a polypeptide with an app. mol. wt. of 38 000 and that of a polypeptide with an app. mol. wt. of 31 000. Sometimes in addition the weak band of a polypeptide with the app. mol. wt. 27 000 was observed on the gel. The polypeptide 38 000 aggregated upon boiling of the sample in the presence of the denaturing agents prior to the electrophoresis, yielding an aggregate with an app. mol. wt. of 50 000. Additional polypeptides which were often found in the photosystem II particle preparation could be identified as subunits of the coupling factor of photophosphorylation CF1. None of the polypeptides described as characteristic for photosystem II are due to proteolytic activity.

As the observed photosystem II activity was found to be DCMU-sensitive it appears that the DCMU-binding protein is among the here described photosystem II polypeptides. Moreover, the authors have reason to believe that one of the major protein components found characteristic for photosystem II is cytochrome b559

If the inline PDF is not rendering correctly, you can download the PDF file here.


Journal + Issues

A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal for the emerging field of natural and natural-like products. ZNC publishes original research on the isolation, bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and biological activity and innovative developed computational methods for predicting their structure and/or function.