Non-Enzymatic RNA Hydrolysis Promoted by the Combined Catalytic Activity of Buffers and Magnesium Ions

Mounir G. AbouHaidar 1  and Ivan G. Ivanov 2
  • 1 Department of Botany, Virology Group, University of Toronto, 25 Willcocks Street, Toronto, Ontario. Canada M5S 3B2
  • 2 Institute of Molecular Biology, Department of Genetic Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria


Although Mg2+ is an important cofactor for the specific degradation of RNA by ribozymes, it is not considered as a typical chemical nuclease. In this study we show that in combination with common buffers such as tris(hydroxymethyl)aminomethane and sodium borate. Mg2+ is a powerful catalyst for the degradation of RNA. pH and temperature are found to be the principal factors for the efficient degradation of RNA. Whereas in Tris-HCl/Mg2+ the effi­cient cleavage starts at pH values higher than 7.5 and temperatures higher than 37 °C, in sodium borate RNA degradation begins at pH 7.0 and at 37 °C. RNA hydrolysis promoted under the combined catalytic activity of buffer/Mg2+ results in partially degraded RNA and negligible amounts of acid-soluble material. Reaction is insensitive to the concentration of monovalent cations but is completely prevented by chelating agents (EDTA and citrate) at concentrations exceeding that of Mg2+. Borate-magnesium reaction is inhibited also by some polyvalent alcohols (glycerol) and sugars.

If the inline PDF is not rendering correctly, you can download the PDF file here.


Journal + Issues

A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal for the emerging field of natural and natural-like products. ZNC publishes original research on the isolation, bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and biological activity and innovative developed computational methods for predicting their structure and/or function.