Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping

Oleg V. Kozlov 1 , Rohan Singh 1 , Bing Ai 2 , Jihong Zhang 2 , Chao Liu 2 , and Victor I. Klimov 1
  • 1 Chemistry Division, C-PCS, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
  • 2 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, P. R. China
Oleg V. Kozlov
  • Chemistry Division, C-PCS, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Rohan Singh
  • Chemistry Division, C-PCS, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Bing Ai
  • State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, P. R. China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Jihong Zhang
  • State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, P. R. China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Chao Liu
  • State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, P. R. China
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Victor I. Klimov
  • Corresponding author
  • Chemistry Division, C-PCS, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Semiconductor doped glasses had been used by the research and engineering communities as color filters or saturable absorbers well before it was realized that their optical properties were defined by tiny specs of semiconductor matter known presently as quantum dots (QDs). Nowadays, the preferred type of QD samples are colloidal particles typically fabricated via organometallic chemical routines that allow for exquisite control of QD morphology, composition and surface properties. However, there is still a number of applications that would benefit from the availability of high-quality glass-based QD samples. These prospective applications include fiber optics, optically pumped lasers and amplifiers and luminescent solar concentrators (LSCs). In addition to being perfect optical materials, glass matrices could help enhance stability of QDs by isolating them from the environment and improving heat exchange with the outside medium. Here we conduct optical studies of a new type of all-inorganic CsPbBr3 perovskite QDs fabricated directly in glasses by high-temperature precipitation. These samples are virtually scattering free and exhibit excellent waveguiding properties which makes them well suited for applications in, for example, fiber optics and LSCs. However, the presently existing problem is their fairly low room-temperature emission quantum yields of only ca. 1%–2%. Here we investigate the reasons underlying the limited emissivity of these samples by conducting transient photoluminescence (PL) and absorption measurements across a range of temperatures from 20 to 300K. We observe that the low-temperature PL quantum yield of these samples can be as high as ~25%. However, it quickly drops (in a nearly linear fashion) with increasing temperature. Interestingly, contrary to traditional thermal quenching models, experimental observations cannot be explained in terms of a thermally activated nonradiative rate but rather suggest the existence of two distinct QD sub-ensembles of “emissive” and completely “nonemissive” particles. The temperature-induced variation in the PL efficiency is likely due to a structural transformation of the QD surfaces or interior leading to formation of extremely fast trapping sites or nonemissive phases resulting in conversion of emissive QDs into nonemissive. Thus, future efforts on improving emissivity of glass-based perovskite QD samples might focus on approaches for extending the range of stability of the low-temperature highly emissive structure/phase of the QDs up to room temperature.

  • 1.

    A. I. Ekimov, A. A. Onushchenko, V. A. Tzehomski, Sov. Phys. Chem. Glass 6 (1980) 511.

  • 2.

    A. I. Ekimov, A. A. Onushchenko, JETP Lett. 34 (1981) 345.

  • 3.

    V. V. Golubkov, A. I. Ekimov, A. A. Onushchenko, V. A. Tzehomski, Sov. Phys. Chem. Glass, 7 (1982) 265.

  • 4.

    N. F. Borrelli, D. W. Hall, H. J. Holland, D. W. Smith, J. Appl. Phys. 61 (1987) 5399.

    • Crossref
    • Export Citation
  • 5.

    Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, JETP Lett. 53 (1991) 314.

  • 6.

    A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, A. L. Efros, J. Opt. Soc. Am. B 10 (1993) 100.

    • Crossref
    • Export Citation
  • 7.

    M. C. Klein, F. Hache, D. Ricard, C. Flytzanis, Phys. Rev. B 42 (1990) 11123.

    • Crossref
    • Export Citation
  • 8.

    S. Nomura, T. Kobayashi, Phys. Rev. B 45 (1992) 1305.

  • 9.

    J. L. Machol, F. W. Wise, R. C. Patel, D. B. Tanner, Phys. Rev. B 48 (1993) 2819.

    • Crossref
    • Export Citation
  • 10.

    C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menéndez-Proupín, A. I. Ekimov, Phys. Rev. B 57 (1998) 4664.

    • Crossref
    • Export Citation
  • 11.

    Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, D. K. Okorokov, JETP Lett. 54 (1991) 442.

  • 12.

    C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.

    • Crossref
    • Export Citation
  • 13.

    X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 404 (2000) 59.

    • Crossref
    • PubMed
    • Export Citation
  • 14.

    N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 106 (2002) 7177.

  • 15.

    A. Eychmüller, J. Phys. Chem. B 104 (2000) 6514.

  • 16.

    W. Weber, J. Lambe, Appl. Opt. 15 (1976) 2299.

  • 17.

    H. Li, K. Wu, H.-J. Song, V. I. Klimov, Nat. Energy 1 (2016) 16157.

    • Crossref
    • Export Citation
  • 18.

    L. R. Bradshaw, K. E. Knowles, S. McDowall, D. R. Gamelin, Nano Lett. 15 (2015) 1315.

    • Crossref
    • PubMed
    • Export Citation
  • 19.

    H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. I. Klimov, Appl. Phys. Lett. 80 (2002) 4614.

    • Crossref
    • Export Citation
  • 20.

    M. A. Petruska, A. P. Bartko, V. I. Klimov, J. Am. Chem. Soc. 124 (2004) 714.

  • 21.

    L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 15 (2015) 3692.

    • Crossref
    • PubMed
    • Export Citation
  • 22.

    Y.-H. Suh, T. Kim, J. W. Choi, C.-L. Lee, J. Park, ACS Appl. Nano Mater. 1 (2018) 488.

    • Crossref
    • Export Citation
  • 23.

    N. J. L. K. Davis, F. J. de la Peña, M. Tabachnyk, J. M. Richter, R. D. Lamboll, E. P. Booker, F. Wisnivesky Rocca Rivarola, J. T. Griffiths, C. Ducati, S. M. Menke, F. Deschler, N. C. Greenham, J. Phys. Chem. C 121 (2017) 3790.

    • Crossref
    • Export Citation
  • 24.

    Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan, G. Du, Nano Lett. 17 (2017) 313.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, J. Am. Chem. Soc. 138 (2016) 3761.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Nat. Commun. 6 (2015) 8056.

    • Crossref
    • PubMed
    • Export Citation
  • 27.

    Y. Wang, X. Li, V. Nalla, H. Zeng, H. Sun, Adv. Funct. Mater. 27 (2017) 1605088.

    • Crossref
    • Export Citation
  • 28.

    H. Zhao, Y. Zhou, D. Benetti, D. Ma, F. Rosei, Nano Energy 37 (2017) 214.

    • Crossref
    • Export Citation
  • 29.

    F. Meinardi, Q. A. Akkerman, F. Bruni, S. Park, M. Mauri, Z. Dang, L. Manna, S. Brovelli, ACS Energy Lett. 2 (2017) 2368.

    • Crossref
    • PubMed
    • Export Citation
  • 30.

    H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, A. L. Rogach, ACS Energy Lett. 2 (2017) 2071.

    • Crossref
    • PubMed
    • Export Citation
  • 31.

    B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, J. Am. Ceram. Soc. 99 (2016) 2875.

    • Crossref
    • Export Citation
  • 32.

    B. Ai, C. Liu, Z. Deng, J. Wang, J. Han, and X. Zhao, Phys. Chem. Chem. Phys. 19 (2017) 17349.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V. I. Klimov, Nano Lett. 16 (2016) 2349.

    • Crossref
    • PubMed
    • Export Citation
  • 34.

    L.-G. Zhang, D.-Z. Shen, X.-W. Fan, S.-Z. Lu, Chin. Phys. Lett. 19 (2002) 578.

    • Crossref
    • Export Citation
  • 35.

    D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, M. Anni, Phys. Rev. B 71 (2005) 235409.

    • Crossref
    • Export Citation
  • 36.

    J. Lee, E. S. Koteles, M. O. Vassell, Phys. Rev. B 33 (1986) 5512.

    • Crossref
    • Export Citation
  • 37.

    C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, A. Y. Silov, ACS Nano 11 (2017) 11024.

    • Crossref
    • PubMed
    • Export Citation
  • 38.

    V. I. Klimov, D. W. McBranch, Phys. Rev. Lett. 80 (1998) 4028.

    • Crossref
    • Export Citation
  • 39.

    V. I. Klimov, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, Phys. Rev. B 60 (1999) 13740.

    • Crossref
    • Export Citation
  • 40.

    S. Kalytchuk, O. Zhovtiuk, S. V. Kershaw, R. Zbořil, A. L. Rogach, Small 12 (2016) 466.

    • Crossref
    • PubMed
    • Export Citation
  • 41.

    C. de Mello Donegá, M. Bode, A. Meijerink, Phys. Rev. B 74 (2006) 085320.

    • Crossref
    • Export Citation
  • 42.

    J. A. McGuire, M. Sykora, I. Robel, L. A. Padilha, J. Joo, J. M. Pietryga, V. I. Klimov, ACS Nano 4 (2010) 6087.

    • Crossref
    • PubMed
    • Export Citation
  • 43.

    L. A. Padilha, I. Robel, D. C. Lee, P. Nagpal, J. M. Pietryga, V. I. Klimov, ACS Nano 5 (2011) 5045.

    • Crossref
    • PubMed
    • Export Citation
  • 44.

    M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stöferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Rainò, A. L. Efros, Nature 553 (2018) 189.

    • Crossref
    • PubMed
    • Export Citation
  • 45.

    I. Robel, R. Gresback, U. Kortshagen, R. D. Schaller, V. I. Klimov, Phys. Rev. Lett. 102 (2009) 177404.

    • Crossref
    • PubMed
    • Export Citation
  • 46.

    V. I. Klimov, Annu. Rev. Condens. Matter Phys. 5 (2014) 13.1.

  • 47.

    J. A. Castañeda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. B. Cruz, L. A. Padilha, ACS Nano 10 (2016) 8603.

    • Crossref
    • PubMed
    • Export Citation
  • 48.

    H.-H. Fang, L. Protesescu, D. M. Balazs, S. Adjokatse, M. V. Kovalenko, M. A. Loi, Small 13 (2017) 1700673.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search