Jump to ContentJump to Main Navigation
Show Summary Details

New Edition

Woodin, W. Hugh

The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal

Series:De Gruyter Series in Logic and Its Applications 1

    189,95 € / $266.00 / £172.50*

    eBook (PDF)
    2nd ed.
    Publication Date:
    July 2010
    Copyright year:
    See all formats and pricing


    Aims and Scope

    The starting point for this monograph is the previously unknown connection between the Continuum Hypothesis and the saturation of the non-stationary ideal on ω1; and the principle result of this monograph is the identification of a canonical model in which the Continuum Hypothesis is false. This is the first example of such a model and moreover the model can be characterized in terms of maximality principles concerning the universal-existential theory of all sets of countable ordinals. This model is arguably the long sought goal of the study of forcing axioms and iterated forcing but is obtained by completely different methods, for example no theory of iterated forcing whatsoever is required. The construction of the model reveals a powerful technique for obtaining independence results regarding the combinatorics of the continuum, yielding a number of results which have yet to be obtained by any other method.

    This monograph is directed to researchers and advanced graduate students in Set Theory. The second edition is updated to take into account some of the developments in the decade since the first edition appeared, this includes a revised discussion of Ω-logic and related matters.

    Supplementary Information


    vi, 852 pages
    Type of Publication:
    Mathematical Logic; Set Theory; Continuum Hypothesis

    MARC record

    MARC record for eBook

    request permissions

    More ...

    W. Hugh Woodin, University of California, Berkeley, USA.


    "[…] the final book is now the definitive word, impressive in context and pleasing to the eye." Review of the first edition - Mathematical Reviews

    "The author began in 1992 with the writing of his book. It gives a deep insight into the relationship between large cardinals, descriptive set theory and forcing axioms. It is a great pleasure that his results are now available in a book." Review of the first edition – Zentralblatt für Mathematik

    Comments (0)

    Please log in or register to comment.
    Log in