Jump to ContentJump to Main Navigation
Show Summary Details

Deep Learning

Research and Applications

Ed. by Bhattacharyya, Siddhartha / Snasel, Vaclav / Ella Hassanien, Aboul / Saha, Satadal / Tripathy, B. K.

Series:De Gruyter Frontiers in Computational Intelligence 7

    109,95 € / $126.99 / £100.00*

    eBook (PDF)
    Publication Date:
    Copyright year:
    To be published:
    July 2020
    See all formats and pricing


    • With tutorials on deep learning framework with focus on tensor flow, keras etc.
    • With a score of worked out examples on real life applications.
    • With illustrative diagrams and coding examples

    Aims and Scope

    This book will focus on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it would provide an insight of deep neural networks in action with illustrative coding examples. Moreover, the book will also provide video demonstrations on each chapter.

    Deep learning is a new area of machine learning research, which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non immediately related fields, for example between air pressure recordings and english words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems.

    Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g., classification) and/or unsupervised (e.g., pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition.

    The unique features of this book include:

    • tutorials on deep learning framework with focus on tensor flow, keras etc.

    • video demonstration of each chapter for enabling the readers to have a good understanding of the chapter contents.

    • a score of worked out examples on real life applications.

    • illustrative diagrams

    • coding examples


    17.0 x 24.0 cm
    Approx. x, 170 pages
    96 Fig.
    Type of Publication:

    request permissions

    More ...

    Siddhartha Bhattacharyya, Kolkata, India.

    More by Tripathy, B. K.:

    Comments (0)

    Please log in or register to comment.
    Log in