Since the mid-1970s, research projects have been carried out to investigate the form of connections using glued threaded rods; Hilmer Riberholt, TU of Denmark, 1973 / Karl Möhler, Klaus Hemmer, Karlsruhe Institute of Technology, 1981.

At the same time as new adhesive systems for timber with an elastic glue joint in the tension zone of the beam; the adhesive was designed to match the requirements mainly 1974 to 1980, several efforts were carried out in various countries, especially in the United States. The objective of the research was to develop new types of connections that are suitable for timber beams in engineered timber structures. In principle, glued connections can be divided into joints with dowels and plates. The advantages of glued connections over pure mechanical connections have long since been established. Glued-in steel components connect the short glulam members of the shell together at the nodes.

The advantages of glued connections over pure mechanical connections have long since been established. Glued-in steel components connect the short glulam members of the shell together at the nodes.
which actually consists of the alternating layers with lengths of 1/20th and diameter of 1/20th. In an effort to create a simple and coherent connection, a M16 bolt with a 1.5 mm thick washer is used. This connection is simple and flexible, allowing for slight movement and rotation.

In addition to connections with glued threaded rods, the potential of glued steel tubes and tubes as integral M16 threads has been investigated over recent years. The load-carrying capacity of grade GL 36 glulam beams can be fully utilised. EIZ (maintenance and intervention centre), Frutigen, Switzerland. Another example of the use of CLT is the folded-plate structure for the small chapel belonging to the deaconess parish of St. Loup in Pompaples, Switzerland. The HSK frame corner works according to a similar principle. In this case four glued-in steel plates, consisting of steel plates with three parallel inclined perforated plates and drilled-out holes, are glued in the inside and outside of the beam and column such that an oversize “football” can be threaded together with the steel company, Swiss Holzbau AG.

In the meantime, various systems with glued steel plates or perforated plates have become established for the connection of “football” or similar metal elements. GLA connectors consist of a steel flange with three parallel, welded perforated plates and drilled-out holes. The glulam beam is clamped by a steel plate and bolt. This connection can be used for the first time as a temporary frame structure consisting of leading frames assembled as triangulated frames to form a space with a diameter of 60m. The “football” type connection is simple and efficient. This type of connection is simple and efficient. It allows for slight movement and rotation and can be used in all respects. Making use of the ordered number of glued plates with a principal stress direction that covers the entire section area and the principal stress direction that covers the entire section area and the principal stress direction that covers the entire section area and the principal stress direction that covers the entire section area and the principal stress direction that covers the entire section area and the principal stress direction that covers the entire section area, the connections are very strong. The principle used in these connections is similar to the connections used in the connections of glued-in strips and resists the resulting transverse tensile forces. The use of CLT is also limited to a few special cases in which there is no other principal stress direction that covers the entire section area, and only a few special cases in which there is no other principal stress direction that covers the entire section area, and only a few special cases in which there is no other principal stress direction that covers the entire section area, and only a few special cases in which there is no other principal stress direction that covers the entire section area, and only a few special cases in which there is no other principal stress direction that covers the entire section area, and only a few special cases in which there is no other principal stress direction that covers the entire section area. This type of connection uses the full stiffness of the coloured frame to resist the resulting transverse tensile forces.