Contents

Preface — v

Melina A. Freitag and Roland W. E. Potthast
Synergy of inverse problems and data assimilation techniques — 1
1 Introduction — 2
2 Regularization theory — 6
3 Cycling, Tikhonov regularization and 3DVar — 8
4 Error analysis — 12
5 Bayesian approach to inverse problems — 14
6 4DVar — 19
7 Kalman filter and Kalman smoother — 23
8 Ensemble methods — 29
9 Numerical examples — 34
9.1 Data assimilation for an advection-diffusion system — 34
9.2 Data assimilation for the Lorenz-95 system — 41
10 Concluding remarks — 48

Amos S. Lawless
Variational data assimilation for very large environmental problems — 55
1 Introduction — 55
2 Theory of variational data assimilation — 56
2.1 Incremental variational data assimilation — 60
3 Practical implementation — 62
3.1 Model development — 62
3.2 Background error covariances — 64
3.3 Observation errors — 70
3.4 Optimization methods — 73
3.5 Reduced order approaches — 75
3.6 Issues for nested models — 79
3.7 Weak-constraint variational assimilation — 81
4 Summary and future perspectives — 83

Sebastian Reich and Colin J. Cotter
Ensemble filter techniques for intermittent data assimilation — 91
1 Bayesian statistics — 91
1.1 Preliminaries — 92
1.2 Bayesian inference — 95
1.3 Coupling of random variables — 98
1.4 Monte Carlo methods — 104
2 Stochastic processes — 106
2.1 Discrete time Markov processes — 107
2.2 Stochastic difference and differential equations — 108
2.3 Ensemble prediction and sampling methods — 112
3 Data assimilation and filtering — 115
3.1 Preliminaries — 115
3.2 Sequential Monte Carlo method — 116
3.3 Ensemble Kalman filter (EnKF) — 119
3.4 Ensemble transform Kalman–Bucy filter — 122
3.5 Guided sequential Monte Carlo methods — 126
3.6 Continuous ensemble transform filter formulations — 127
4 Concluding remarks — 132

Martin Burger, Hendrik Dirks and Jahn Müller
Inverse problems in imaging — 135
1 Mathematical models for images — 136
2 Examples of imaging devices — 139
2.1 Optical imaging — 139
2.2 Transmission tomography — 139
2.3 Emission tomography — 141
2.4 MR imaging — 143
2.5 Acoustic imaging — 143
2.6 Electromagnetic imaging — 144
3 Basic image reconstruction — 144
3.1 Deblurring and point spread functions — 145
3.2 Noise — 146
3.3 Reconstruction methods — 147
4 Missing data and prior information — 149
4.1 Prior information — 149
4.2 Undersampling and superresolution — 152
4.3 Inpainting — 155
4.4 Surface imaging — 158
5 Calibration problems — 161
5.1 Blind deconvolution — 162
5.2 Nonlinear MR imaging — 163
5.3 Attenuation correction in SPECT — 163
5.4 Blind spectral unmixing — 164
6 Model-based dynamic imaging — 165
6.1 Kinetic models — 166
6.2 Parameter identification — 168
6.3 Basis pursuit — 170
6.4 Motion and deformation models — 172
6.5 Advanced PDE models — 174

Kees van den Doel, Uri M. Ascher and Eldad Haber

The lost honor of ℓ_2-based regularization — 181

1 Introduction — 181
2 ℓ_1-based regularization — 185
3 Poor data — 188
4 Large, highly ill-conditioned problems — 191
4.1 Inverse potential problem — 191
4.2 The effect of ill-conditioning on L1 regularization — 194
4.3 Nonlinear, highly ill-posed examples — 198
5 Summary — 200

List of contributors — 204