Contents

Preface—v

Author index—xv

1 Membrane applications in agro-industry — 1
 F. Petrus Cuperus and A.C.M. (Tony) Franken
 1.1 Introduction — 1
 1.2 Membranes in biorefinery — 1
 1.2.1 What is biorefinery? — 1
 1.2.2 Mild extraction techniques — 2
 1.2.3 Use of membranes in biorefinery — 4
 1.2.3.1 Crossflow — 5
 1.2.3.2 Cross-rotation (CR) filtration — 5
 1.2.3.3 Rotating membranes — 6
 1.2.3.4 Vibrational membranes — 7
 1.2.4 Removing minerals from road-side grass — 10
 1.2.5 Biofuel including microalgae — 11
 1.3 Membranes in vegetable oils and fats — 14
 1.3.1 Membrane technology applied to vegetable oils — 14
 1.3.2 Solvent recovery and reuse — 16
 1.3.3 Wax removal and/or recovery — 17
 1.3.4 Goodies in oil — 18
 1.4 Application scale and outlook — 20
 1.4.1 Application scale — 20
 1.4.2 Outlook — 21
 1.5 References — 21

2 Process intensification in integrated membrane processes — 25
 Philip Lutze and Rafiqul Gani
 2.1 Introduction — 25
 2.1.1 Background: process intensification — 25
 2.1.2 Membranes and process intensification — 26
 2.2 Synthesis/design of membrane-assisted PI – overview and concepts — 28
 2.2.1 Mathematical formulation of the PI synthesis problem — 29
 2.2.2 PI synthesis based on the decomposition approach — 31
 2.2.3 Phenomena as building blocks for process synthesis — 31
 2.2.4 Connection of phenomena — 33
 2.3 Synthesis/design of membrane-assisted PI – workflow — 34
 2.3.1 Steps of the general workflow — 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1.1 Step 1: Define problem</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1.2 Step A2: Analyze the process</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1.3 B2: Identify and analyze necessary tasks to achieve the process target</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1.4 Step 6: Solve the reduced optimization problem and validate most promising</td>
<td>37</td>
</tr>
<tr>
<td>2.3.2 KBS workflow</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3 UBS workflow</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3.1 Step U2: Collect PI equipment</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3.2 Step U3: Select and develop models</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3.3 Step U4: Generate feasible flowsheet options</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3.4 Step U5: Fast screening for process constraints</td>
<td>39</td>
</tr>
<tr>
<td>2.3.4 PBS workflow</td>
<td>39</td>
</tr>
<tr>
<td>2.3.4.1 Step P3: Identification of desirable phenomena</td>
<td>40</td>
</tr>
<tr>
<td>2.3.4.2 Step P4: Generate feasible operation/flowsheet options</td>
<td>40</td>
</tr>
<tr>
<td>2.3.4.3 Step P5: Fast screening for process constraints</td>
<td>40</td>
</tr>
<tr>
<td>2.4 Synthesis/design of membrane-assisted PI – sub-algorithms,</td>
<td>41</td>
</tr>
<tr>
<td>supporting methods and tools</td>
<td>41</td>
</tr>
<tr>
<td>2.4.1 Sub-algorithms</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2 Supporting methods and tools</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2.1 Knowledge base tool</td>
<td>42</td>
</tr>
<tr>
<td>2.4.2.2 Model library</td>
<td>42</td>
</tr>
<tr>
<td>2.4.2.3 Method based on thermodynamic insights</td>
<td>42</td>
</tr>
<tr>
<td>2.4.2.4 Driving force method</td>
<td>43</td>
</tr>
<tr>
<td>2.4.2.5 Extended Kremser method</td>
<td>43</td>
</tr>
<tr>
<td>2.4.2.6 Additional tools</td>
<td>43</td>
</tr>
<tr>
<td>2.5 Conceptual example</td>
<td>45</td>
</tr>
<tr>
<td>2.5.1 Step 1: Define problem</td>
<td>45</td>
</tr>
<tr>
<td>2.5.2 Step A2: Analyze the process</td>
<td>45</td>
</tr>
<tr>
<td>2.5.3 Result of the PBS workflow</td>
<td>46</td>
</tr>
<tr>
<td>2.5.3.1 Step P3: Identification of desirable phenomena</td>
<td>46</td>
</tr>
<tr>
<td>2.5.3.2 Step P4: Generate feasible operation/flowsheet options</td>
<td>48</td>
</tr>
<tr>
<td>2.5.3.3 Step P5: Fast screening for process constraints</td>
<td>49</td>
</tr>
<tr>
<td>2.5.3.4 Step 6: Solve the reduced optimization problem and validate most promising</td>
<td>50</td>
</tr>
<tr>
<td>2.5.4 Comparison of solutions obtained from PBS, KBS and UBS</td>
<td>51</td>
</tr>
<tr>
<td>2.5.4.1 Result of the KBS workflow</td>
<td>51</td>
</tr>
<tr>
<td>2.5.4.2 Result of the UBS workflow</td>
<td>53</td>
</tr>
<tr>
<td>2.5.4.3 Comparison of the results</td>
<td>53</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>55</td>
</tr>
<tr>
<td>2.7 References</td>
<td>55</td>
</tr>
</tbody>
</table>
3 Integrated membrane operations in fruit juice processing — 59
Alfredo Cassano, Carmela Conidi and Enrico Drioli

3.1 Introduction — 59
3.2 Clarification of fruit juices — 59
3.3 Concentration of fruit juices — 65
3.3.1 Nanofiltration — 65
3.3.2 Reverse osmosis — 66
3.3.3 Osmotic distillation — 67
3.3.4 Membrane distillation — 69
3.4 Integrated membrane operations in fruit juices production — 71
3.4.1 Apple juice — 71
3.4.2 Red fruit juices — 74
3.4.3 Other fruit juices — 78
3.4.3.1 Kiwifruit juice — 78
3.4.3.2 Cactus pear juice — 79
3.4.3.3 Melon juice — 81
3.5 Conclusions — 81
3.6 References — 82

4 Integrated membrane operations in citrus processing — 87
Alfredo Cassano and Bining Jiao

4.1 Introduction — 87
4.2 Clarification of citrus juices — 89
4.3 Debittering of orange juice — 92
4.4 Concentration of citrus juices — 93
4.4.1 Reverse osmosis — 93
4.4.2 Membrane distillation and osmotic distillation — 95
4.5 Recovery of aroma compounds — 102
4.6 Treatment of citrus by-products — 103
4.7 Concluding remarks — 108
4.8 References — 109

5 Integrated membrane and conventional processes applied to milk processing — 113
Germano Mucchetti

5.1 Introduction — 113
5.2 Fluid milk — 114
5.2.1 MF and bacterial removal — 114
5.2.2 MF, somatic cells and enzyme removal — 118
5.2.3 Membrane reactors for free lactose milk — 119
5.2.4 Heat labile ingredients sterilization (MF/UF) and addition to heat-treated milk during packaging — 120
5.3 Cheese milk — 121
5.3.1 Reverse osmosis application to cheese milk — 121
5.3.2 Cheese milk concentration — 121
5.3.3 Cheese milk medium and high concentration — 122
5.3.4 Cheese milk standardization — 123
5.3.5 Cream concentration by UF for mascarpone cheese — 125
5.3.6 Cheese brine treatment — 127
5.4 Conclusions — 128
5.5 References — 128

6 Integrated membrane operations in whey processing — 133
Geneviève Gésan-Guiziou

6.1 Introduction — 133
6.2 Whey types and composition — 133
6.3 Concentration and demineralization of whey — 135
6.4 Concentration of serum proteins — 138
6.5 Fractionation of individual serum proteins — 141
6.6 Development of new value-added products from whey — 143
6.7 Conclusions and challenges — 144
6.8 References — 145

7 Integrated membrane processes in winemaking — 147
Youssef El Rayess and Martine Mietton-Peuchot

7.1 Introduction — 147
7.2 Crossflow microfiltration for must, wine and lees clarification — 148
7.3 Electrodialysis and bipolar electrodialysis — 152
7.4 UF and NF for reduction of must sugars — 156
7.5 RO and NF for sugar must concentration — 157
7.6 RO, NF and MC for wine dealcoholization — 158
7.7 Gas control by membrane processes — 160
7.8 References — 161

8 Membrane operations in the sugar and brewing industry — 163
Frank Lipnizki and René Ruby-Figueroa

8.1 Introduction — 163
8.2 Beet and cane sugar production — 163
8.2.1 Membrane applications on beet sugar production — 164
8.2.1.1 Sugar beet press water and pulp recycling — 165
8.2.1.2 Raw juice purification — 167
8.2.1.3 Demineralization of beet juice — 172
8.2.1.4 Preconcentration of thin juice — 173
8.3 Membrane application in cane sugar production — 175
9 Processing of stevioside using membrane-based separation processes — 201
Sourav Mondal and Sirshendu De

9.1 Introduction — 201
9.2 Physical and biological properties of steviol glycosides — 203
9.3 Extraction methods of steviol glycosides — 205
9.3.1 Ion-exchange — 205
9.3.2 Solvent extraction — 205
9.3.3 Extraction by chelating agents — 206
9.3.4 Adsorption and chromatographic separation — 206
9.3.5 Ultrasonic extraction — 206
9.3.6 Microwave-assisted extraction — 206
9.3.7 Super critical fluid extraction (SCFE) — 206
9.4 State-of-the-art membrane-based processes — 207
9.5 Detailed membrane-based clarification processes — 208
9.5.1 Hot water extraction — 208
9.5.2 Selection of operating conditions and membrane — 212
9.5.3 Crossflow ultrafiltration — 217
9.5.4 Nanofiltration — 220
9.5.5 Diafiltration — 222
9.6 References — 226

10 Production of value-added soy protein products by membrane-based operations — 233
Martin Mondor

10.1 Introduction — 233
10.1.1 Soy as the most important source of plant protein ingredients — 233
10.1.2 Production of soy protein isolates by isoelectric precipitation — 233
10.1.3 Soy bioactive peptides —— 234
10.2 Membrane technologies in the processing of soy protein products —— 235
10.2.1 Ultrafiltration —— 236
10.2.1.1 Membranes —— 237
10.2.1.2 Membrane fouling —— 237
10.2.1.3 Operating variables —— 238
10.2.2 Electrodialysis —— 239
10.2.2.1 Conventional electrodialysis —— 239
10.2.2.2 Bipolar membrane electrodialysis —— 241
10.2.3 Integrated electrodialysis-ultrafiltration process —— 243
10.3 Production of soy protein isolates by membrane technologies —— 244
10.3.1 Ultrafiltration —— 244
10.3.1.1 Removal of undesirable components of soy protein extracts —— 245
10.3.1.2 Production of soy protein isolate with a high amount of isoflavones —— 246
10.3.1.3 Functionality of soy protein isolate produced by ultrafiltration —— 247
10.3.2 Electrodialysis with bipolar membranes —— 249
10.3.3 Electrodialysis with bipolar membranes in combination with ultrafiltration-diafiltration —— 251
10.4 Separation of soy peptides by membrane technologies —— 254
10.4.1 Ultrafiltration —— 255
10.4.2 Integrated electrodialysis – ultrafiltration approach —— 258
10.5 Concluding remarks and perspectives —— 261
10.5.1 Acknowledgments —— 262
10.6 References —— 262

11 Concentration of polyphenols by integrated membrane operations —— 269
Iren Tsibranska and Bartosz Tylkowski
11.1 Introduction —— 269
11.1.1 Beneficial effects of polyphenols —— 270
11.1.2 Separation/concentration of polyphenols by traditional methods —— 270
11.1.2.1 Separation of polyphenols at laboratory scale —— 271
11.1.2.2 Concentration of polyphenols at industrial scale —— 272
11.2 Concentration of polyphenols by integrated membrane operations —— 272
11.2.1 Membrane processes for concentration of plant extracts —— 273
11.2.2 Membrane processes for concentration of juices —— 281
11.2.3 Membrane processes for recovery/concentration of polyphenols from industrial waste waters (WW) —— 281
11.3 References —— 289
12 Valorization of food processing streams for obtaining extracts enriched in biologically active compounds — 295
 Carla Brazinha and Joao G. Crespo
 12.1 Introduction — 295
 12.2 Market of the natural extracts ingredients — 295
 12.3 Production of natural extracts – process and final product requirements — 297
 12.4 Fractionation, concentration and purification of BAC with membrane-processing techniques — 300
 12.4.1 Fractionation with pervaporation/vapor permeation — 300
 12.4.2 Extract fractionation and purification by nanofiltration — 302
 12.5 Concluding remarks — 306
 12.6 References — 306

13 Biocatalytic membrane reactors for the production of nutraceuticals — 311
 Lidietta Giorno, Rosalinda Mazzei and Emma Piacentini
 13.1 Introduction — 311
 13.2 General aspects — 313
 13.3 Applications — 316
 13.3.1 Starch sugars — 317
 13.3.2 Fruit juices processing — 317
 13.3.3 Production of functional molecules and spices — 318
 13.3.4 Fats and oils — 318
 13.3.5 Alcoholic beverages — 318
 13.3.6 Water purification for food production — 319
 13.4 Conclusions — 321
 13.5 References — 322

14 Membrane emulsification in integrated processes for innovative food — 323
 Catherine Charcosset
 14.1 Introduction — 323
 14.2 Membrane emulsification — 324
 14.2.1 Configurations — 324
 14.2.2 Membranes — 326
 14.2.3 Influence of parameters — 327
 14.3 Applications — 328
 14.3.1 Simple emulsions — 328
 14.3.2 Multiple emulsions — 329
 14.3.3 Encapsulation — 330
 14.3.4 Aerated food gels — 331
 14.4 Integrated processes — 331
 14.4.1 Beverages — 331