Contents

Preface vii

1 An introduction using classical examples 1

1.1 Numerical differentiation. First look at the problem of regularization. 1
The balancing principle ... 1
1.1.1 Finite-difference formulae .. 1
1.1.2 Finite-difference formulae for nonexact data. A priori choice of the stepsize ... 3
1.1.3 A posteriori choice of the stepsize 6
1.1.4 Numerical illustration .. 9
1.1.5 The balancing principle in a general framework 10

1.2 Stable summation of orthogonal series with noisy coefficients. 12
Deterministic and stochastic noise models. Description of smoothness properties ... 12
1.2.1 Summation methods ... 13
1.2.2 Deterministic noise model ... 14
1.2.3 Stochastic noise model .. 15
1.2.4 Smoothness associated with a basis 18
1.2.5 Approximation and stability properties of λ-methods 19
1.2.6 Error bounds ... 21

1.3 The elliptic Cauchy problem and regularization by discretization 25
1.3.1 Natural linearization of the elliptic Cauchy problem 27
1.3.2 Regularization by discretization 36
1.3.3 Application in detecting corrosion 39

2 Basics of single parameter regularization schemes 47

2.1 Simple example for motivation .. 47
2.2 Essentially ill-posed linear operator equations. Least-squares solution. General view on regularization 49

2.3 Smoothness in the context of the problem. Benchmark accuracy levels for deterministic and stochastic data noise models 65
2.3.1 The best possible accuracy for the deterministic noise model ... 68
2.3.2 The best possible accuracy for the Gaussian white noise model ... 73
2.4 Optimal order and the saturation of regularization methods in Hilbert spaces .. 80
2.5 Changing the penalty term for variance reduction. Regularization in Hilbert scales ... 90
2.6 Estimation of linear functionals from indirect noisy observations .. 101
2.7 Regularization by finite-dimensional approximation .. 113
2.8 Model selection based on indirect observation in Gaussian white noise 124
2.8.1 Linear models given by least-squares methods .. 127
2.8.2 Operator monotone functions .. 131
2.8.3 The problem of model selection (continuation) .. 137
2.9 A warning example: an operator equation formulation is not always adequate (numerical differentiation revisited) .. 141
2.9.1 Numerical differentiation in variable Hilbert scales associated with designs .. 143
2.9.2 Error bounds in L_2 .. 147
2.9.3 Adaptation to the unknown bound of the approximation error .. 150
2.9.4 Numerical differentiation in the space of continuous functions .. 151
2.9.5 Relation to the Savitzky–Golay method. Numerical examples .. 155
3 Multiparameter regularization 163
3.1 When do we really need multiparameter regularization? .. 163
3.2 Multiparameter discrepancy principle .. 165
3.2.1 Model function based on the multiparameter discrepancy principle .. 168
3.2.2 A use of the model function to approximate one set of parameters satisfying the discrepancy principle .. 170
3.2.3 Properties of the model function approximation .. 172
3.2.4 Discrepancy curve and the convergence analysis .. 173
3.2.5 Heuristic algorithm for the model function approximation of the multiparameter discrepancy principle .. 174
3.2.6 Generalization in the case of more than two regularization parameters .. 175
3.3 Numerical realization and testing .. 177
3.3.1 Numerical examples and comparison .. 177
3.3.2 Two-parameter discrepancy curve .. 182
3.3.3 A numerical check of Proposition 3.1 and use of a discrepancy curve ... 184
3.3.4 Experiments with three-parameter regularization 187
3.4 Two-parameter regularization with one negative parameter for problems with noisy operators and right-hand side 189
3.4.1 Computational aspects for regularized total least squares 191
3.4.2 Computational aspects for dual regularized total least squares . 192
3.4.3 Error bounds in the case $B = I$... 193
3.4.4 Error bounds for $B \neq I$.. 195
3.4.5 Numerical illustrations. Model function approximation in dual regularized total least squares 197
4 Regularization algorithms in learning theory 203
4.1 Supervised learning problem as an operator equation in a reproducing kernel Hilbert space (RKHS) 203
4.1.1 Reproducing kernel Hilbert spaces and related operators 205
4.1.2 A priori assumption on the problem: general source conditions .. 207
4.2 Kernel independent learning rates ... 209
4.2.1 Regularization for binary classification: risk bounds and Bayes consistency .. 217
4.3 Adaptive kernel methods using the balancing principle 218
4.3.1 Adaptive learning when the error measure is known 220
4.3.2 Adaptive learning when the error measure is unknown 223
4.3.3 Proofs of Propositions 4.6 and 4.7 225
4.3.4 Numerical experiments. Quasibalancing principle 231
4.4 Kernel adaptive regularization with application to blood glucose reading .. 235
4.4.1 Reading the blood glucose level from subcutaneous electric current measurements ... 242
4.5 Multiparameter regularization in learning theory 249
5 Meta-learning approach to regularization – case study: blood glucose prediction .. 255
5.1 A brief introduction to meta-learning and blood glucose prediction ... 255
5.2 A traditional learning theory approach: issues and concerns 259
5.3 Meta-learning approach to choosing a kernel and a regularization parameter .. 261
5.3.1 Optimization operation .. 263
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.2 Heuristic operation</td>
<td>267</td>
</tr>
<tr>
<td>5.3.3 Learning at metalevel</td>
<td>267</td>
</tr>
<tr>
<td>5.4 Case-study: blood glucose prediction</td>
<td>269</td>
</tr>
<tr>
<td>Bibliography</td>
<td>277</td>
</tr>
<tr>
<td>Index</td>
<td>289</td>
</tr>
</tbody>
</table>