Contents

Preface —— v

Contributing authors —— xii

Corien Bakermans

1 Extreme environments as model systems for the study of microbial evolution —— 1

1.1 Introduction —— 1
1.2 Extreme environments as model systems —— 1
1.3 What is known about microbial evolution? —— 4
1.3.1 Community diversity as a measure of evolution —— 7
1.3.2 Adaptive traits as a measure of evolution —— 8
1.4 Themes from extreme environments —— 9
1.5 Conclusions and open questions —— 11

Francisco J. López de Saro, Héctor Díaz-Maldonado, and Ricardo Amils

2 Microbial evolution: the view from the acidophiles —— 19

2.1 Introduction —— 19
2.2 Horizontal gene transfer —— 20
2.3 The mobilome —— 21
2.4 Phages —— 22
2.5 Plasmids —— 23
2.6 Transposons —— 24
2.7 Evolution and ecology: long term studies of genetic variation —— 25
2.8 Future directions —— 26

R. Eric Collins

3 Microbial Evolution in the Cryosphere —— 31

3.1 Overview —— 31
3.1.1 Cryospheric environments —— 31
3.1.2 Modes of evolution —— 34
3.1.3 Adaptations to living with ice —— 37
3.2 Focus on sea ice —— 38
3.2.1 Sea ice characteristics —— 38
3.2.2 Evolutionary modes in sea ice —— 42
3.3 Ongoing work and future directions —— 43
3.3.1 Field work and experimentation —— 43
3.3.2 ‘-omics’ in the cryosphere —— 44
3.3.3 Linking phenotype and genotype —— 46
Maximiliano J. Amenabar, Matthew R. Urschel, and Eric S. Boyd

4 Metabolic and taxonomic diversification in continental magmatic hydrothermal systems — 57
 4.1 Introduction — 57
 4.2 Geological drivers of geochemical variation in continental hydrothermal systems — 59
 4.3 Taxonomic and functional diversity in continental hydrothermal ecosystems — 64
 4.4 Application of phylogenetic approaches to map taxonomic and functional diversity on spatial geochemical landscapes — 68
 4.5 Molecular adaptation to high temperature — 72
 4.5.1 Lipids — 72
 4.5.2 Protein stability — 73
 4.5.3 Cytoplasmic osmolytes — 74
 4.5.4 Motility — 76
 4.6 Mechanisms of evolution in high temperature environments — 78
 4.7 Concluding remarks — 81

Aharon Oren

5 Halophilic microorganisms and adaptation to life at high salt concentrations — evolutionary aspects — 97
 5.1 Phylogenetic and physiological diversity of halophilic microorganisms — 97
 5.2 What adaptations are necessary to become a halophile? — 99
 5.3 Is an acidic (meta)proteome indeed indicative for halophily and high intracellular ionic concentrations? — 100
 5.4 Genetic variation and horizontal gene transfer in communities of halophilic Archaea — 101
 5.5 Salinibacter: convergent evolution and the ‘salt-in’ strategy of haloadaptation — 103
 5.6 High intracellular K⁺ concentrations but no acidic proteome? The case of the Halanaerobiales — 104
 5.7 Different modes of haloadaptation in closely related Halorhodospira species — 105
 5.8 Final comments — 105

John R. Battista

6 The origin of extreme ionizing radiation resistance — 111
 6.1 Introduction and background — 111
 6.1.1 Ionizing radiation — 111
 6.1.2 Biological damage caused by electromagnetic radiations — 112
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>How do we estimate rates of genetic change?</td>
<td>253</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Relative rate estimation</td>
<td>254</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Absolute rate estimation</td>
<td>255</td>
</tr>
<tr>
<td>13.3</td>
<td>How do we model evolutionary rates?</td>
<td>257</td>
</tr>
<tr>
<td>13.4</td>
<td>Environments and evolutionary rates</td>
<td>257</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Evolutionary rates of pathogens</td>
<td>258</td>
</tr>
<tr>
<td>13.5</td>
<td>Large-scale genomic changes: duplications/loss and horizontal gene acquisition</td>
<td>259</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Rates of gene duplication and loss</td>
<td>259</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Highways of horizontal gene transfers</td>
<td>261</td>
</tr>
<tr>
<td>13.6</td>
<td>Conclusions</td>
<td>263</td>
</tr>
</tbody>
</table>

Index | 269