Abstract
We use recent duality results of Eisenbud and Ulrich to give tools to study quadratically enriched residual intersections when there is no excess bundle. We use this to prove a formula for the Witt-valued Euler number of an almost complete intersection. We give example computations of quadratically enriched excess and residual intersections.
Funding source: National Science Foundation
Award Identifier / Grant number: DMS 2001890
Award Identifier / Grant number: DMS 2103838
Funding statement: Kirsten Wickelgren was partially supported by NSF CAREER DMS 2001890 and NSF DMS 2103838.
A Macaulay2 code
We have implemented functions for the computer program Macaulay2 [21] to carry out the computations implicit in Proposition 2.3 for concrete examples, in the case
Below, is a sample session computing a diagonal representative of
We thus find that
Functions Bprime and CDTr from form.m2
Function diagonalize from diagonalization.m2
Acknowledgements
We wish to thank Claudia Polini for introducing us to the paper [15], David Eisenbud for useful discussions (he owes us money as he promised payment for asking questions he can answer), Stephen McKean for useful discussions on [45], and Sabrina Pauli for useful discussions on quadratically enriched excess intersections. Kirsten Wickelgren gratefully thanks Joseph Rabinoff for providing “a room of one’s own” to work on this paper.
References
[1] M. Artin and M. Nagata, Residual intersections in Cohen–Macaulay rings, J. Math. Kyoto Univ. 12 (1972), 307–323. 10.1215/kjm/1250523522Search in Google Scholar
[2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading 1969. Search in Google Scholar
[3] T. Bachmann, The generalized slices of Hermitian 𝐾-theory, J. Topol. 10 (2017), no. 4, 1124–1144. 10.1112/topo.12032Search in Google Scholar
[4] T. Bachmann and K. Wickelgren, A1-Euler classes: Six functors formalisms, dualities, integrality and linear subspaces of complete intersections, J. Inst. Math. Jussieu 22 (2023), no. 2, 681–746. 10.1017/S147474802100027XSearch in Google Scholar
[5] M. Brandenburg, Tensor categorical foundations of algebraic geometry, preprint (2014), https://arxiv.org/abs/1410.1716. Search in Google Scholar
[6] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Stud. Adv. Math. 39, Cambridge University, Cambridge 1993. Search in Google Scholar
[7] B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, M. Land, K. Moi, D. Nardin, T. Nikolaus and W. Steimle, Hermitian k-theory for stable ∞-categories I, preprint (2020), https://arxiv.org/abs/2009.07223. Search in Google Scholar
[8] M. Chardin, J. Naéliton and Q. H. Tran, Cohen–Macaulayness and canonical module of residual intersections, Trans. Amer. Math. Soc. 372 (2019), no. 3, 1601–1630. 10.1090/tran/7607Search in Google Scholar
[9] M. Chasles, Construction des coniques qui satisfont à cinq conditions. Nombre des solutions dans chaque question, C. R. Acad. Sci. Paris 58 (1864), 297–308. Search in Google Scholar
[10] E. Cotterill, I. Darago and C. Han, Arithmetic inflection formulae for linear series on hyperelliptic curves, preprint (2023), https://arxiv.org/abs/2010.01714; to appear in Math. Nachr. 10.1002/mana.202100229Search in Google Scholar
[11] D. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms, 3rd ed., Undergrad. Texts Math., Springer, New York 2007. 10.1007/978-0-387-35651-8Search in Google Scholar
[12] F. Déglise, F. Jin and A. A. Khan, Fundamental classes in motivic homotopy theory, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 12, 3935–3993. 10.4171/JEMS/1094Search in Google Scholar
[13] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math. 150, Springer, New York 1995. 10.1007/978-1-4612-5350-1Search in Google Scholar
[14] D. Eisenbud and J. Harris, 3264 and all that—a second course in algebraic geometry, Cambridge University, Cambridge 2016. 10.1017/CBO9781139062046Search in Google Scholar
[15] D. Eisenbud and B. Ulrich, Duality and socle generators for residual intersections, J. reine angew. Math. 2019 (2019), no. 756, 183–226. 10.1515/crelle-2017-0045Search in Google Scholar
[16] J. Fasel, The excess intersection formula for Grothendieck–Witt groups, Manuscripta Math. 130 (2009), no. 4, 411–423. 10.1007/s00229-009-0300-5Search in Google Scholar
[17] J. Fasel, Lectures on Chow–Witt groups, Motivic homotopy theory and refined enumerative geometry, Contemp. Math. 745, American Mathematical Society, Providence (2020), 83–121. 10.1090/conm/745/15023Search in Google Scholar
[18] S. Finashin and V. Kharlamov, Segre indices and Welschinger weights as options for invariant count of real lines, Int. Math. Res. Not. IMRN 2021 (2021), no. 6, 4051–4078. 10.1093/imrn/rnz208Search in Google Scholar
[19] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb., Springer, Berlin 1984. 10.1007/978-3-662-02421-8Search in Google Scholar
[20] W. Fulton and R. MacPherson, Defining algebraic intersections, Algebraic geometry (Tromsø 1977), Lecture Notes in Math. 687, Springer, Berlin (1978), 1–30. 10.1007/BFb0062926Search in Google Scholar
[21] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/. Search in Google Scholar
[22] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Lib., John Wiley & Sons, New York 1994. 10.1002/9781118032527Search in Google Scholar
[23] A. Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. Rédigé avec la colloboration de Jean Dieudonné, Publ. Math. Inst. Hautes Étud. Sci. 32 (1967), 1–361. 10.1007/BF02732123Search in Google Scholar
[24] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer, Berlin 1966. 10.1007/BFb0080482Search in Google Scholar
[25] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, Springer 2013. Search in Google Scholar
[26]
J. L. Kass and K. Wickelgren,
The class of Eisenbud–Khimshiashvili–Levine is the local
[27] J. L. Kass and K. Wickelgren, An arithmetic count of the lines on a smooth cubic surface, Compos. Math. 157 (2021), no. 4, 677–709. 10.1112/S0010437X20007691Search in Google Scholar
[28] E. Kunz, Residues and duality for projective algebraic varieties, Univ. Lecture Ser. 47, American Mathematical Society, Providence 2008. 10.1090/ulect/047Search in Google Scholar
[29] S. Lang, Algebra, 3rd ed., Grad. Texts in Math. 211, Springer, New York 2002. 10.1007/978-1-4613-0041-0_1Search in Google Scholar
[30] M. Levine, Motivic Euler characteristics and Witt-valued characteristic classes, Nagoya Math. J. 236 (2019), 251–310. 10.1017/nmj.2019.6Search in Google Scholar
[31] M. Levine, Aspects of enumerative geometry with quadratic forms, Doc. Math. 25 (2020), 2179–2239. 10.4171/dm/797Search in Google Scholar
[32] M. Levine and A. Raksit, Motivic Gauss–Bonnet formulas, Algebra Number Theory 14 (2020), no. 7, 1801–1851. 10.2140/ant.2020.14.1801Search in Google Scholar
[33] J. Lurie, Higher topos theory, Ann. of Math. Stud. 170, Princeton University, Princeton 2009. 10.1515/9781400830558Search in Google Scholar
[34] F. Marty, Des ouverts Zariski et des morphismes lisses en géométrie relative, Ph.D. thesis, Université Toulouse IIII-Paul Sabatier, 2009, http://thesesups.ups-tlse.fr/540/1/Marty_Florian.pdf. Search in Google Scholar
[35] H. Matsumura, Commutative algebra, 2nd ed., Math. Lect. Note Ser. 56, Benjamin/Cummings, Reading 1980. Search in Google Scholar
[36] S. McKean, An arithmetic enrichment of Bézout’s theorem, Math. Ann. 379 (2021), no. 1–2, 633–660. 10.1007/s00208-020-02120-3Search in Google Scholar
[37]
F. Morel,
[38]
S. Pauli,
Computations in
[39]
S. Pauli,
Computing
[40] S. Pauli, Quadratic types and the dynamic Euler number of lines on a quintic threefold, Adv. Math. 405 (2022), Paper No. 108508. 10.1016/j.aim.2022.108508Search in Google Scholar
[41] C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), no. 4, 271–302. 10.1007/BF01425554Search in Google Scholar
[42] G. Scheja and U. Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. reine angew. Math. 278–279 (1975), 174–190. 10.1515/crll.1975.278-279.174Search in Google Scholar
[43]
P. Srinivasan and K. Wickelgren,
An arithmetic count of the lines meeting four lines in
[44] B. Ulrich, Artin–Nagata properties and reductions of ideals, Commutative algebra: Syzygies, multiplicities, and birational algebra, Contemp. Math. 159, American Mathematical Society, Providence (1994), 373–400. 10.1090/conm/159/01519Search in Google Scholar
[45] D. van Straten and T. Warmt, Gorenstein-duality for one-dimensional almost complete intersections—with an application to non-isolated real singularities, Math. Proc. Cambridge Philos. Soc. 158 (2015), no. 2, 249–268. 10.1017/S0305004114000504Search in Google Scholar
[46] The Stacks project authors, Stacks project, http://stacks.math.columbia.edu, 2018. Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston