Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 25, 2023

On quadratically enriched excess and residual intersections

  • Tom Bachmann and Kirsten Wickelgren EMAIL logo

Abstract

We use recent duality results of Eisenbud and Ulrich to give tools to study quadratically enriched residual intersections when there is no excess bundle. We use this to prove a formula for the Witt-valued Euler number of an almost complete intersection. We give example computations of quadratically enriched excess and residual intersections.

Award Identifier / Grant number: DMS 2001890

Award Identifier / Grant number: DMS 2103838

Funding statement: Kirsten Wickelgren was partially supported by NSF CAREER DMS 2001890 and NSF DMS 2103838.

A Macaulay2 code

We have implemented functions for the computer program Macaulay2 [21] to carry out the computations implicit in Proposition 2.3 for concrete examples, in the case n = 5 . Specifically, we have a function Bprime which can be used to obtain the matrix of a symmetric bilinear form B such that B B 5 0 , and we have a function diagonalize which can be used to diagonalize a symmetric bilinear form over a field of characteristic not 2. The function Bprime uses a supporting function CDTr which is based on a function of S. Pauli [39]. The code is included at the end of this appendix.

Example A.1

Below, is a sample session computing a diagonal representative of B for a random set of five quadrics on P 5 vanishing on P 2 , over the finite field F 61 .

We thus find that

[ B ] = 1 + 11 + 29 + 12 W ( F 61 ) .

Listing 1

Functions Bprime and CDTr from form.m2

Listing 2

Function diagonalize from diagonalization.m2

Acknowledgements

We wish to thank Claudia Polini for introducing us to the paper [15], David Eisenbud for useful discussions (he owes us money as he promised payment for asking questions he can answer), Stephen McKean for useful discussions on [45], and Sabrina Pauli for useful discussions on quadratically enriched excess intersections. Kirsten Wickelgren gratefully thanks Joseph Rabinoff for providing “a room of one’s own” to work on this paper.

References

[1] M. Artin and M. Nagata, Residual intersections in Cohen–Macaulay rings, J. Math. Kyoto Univ. 12 (1972), 307–323. 10.1215/kjm/1250523522Search in Google Scholar

[2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading 1969. Search in Google Scholar

[3] T. Bachmann, The generalized slices of Hermitian 𝐾-theory, J. Topol. 10 (2017), no. 4, 1124–1144. 10.1112/topo.12032Search in Google Scholar

[4] T. Bachmann and K. Wickelgren, A1-Euler classes: Six functors formalisms, dualities, integrality and linear subspaces of complete intersections, J. Inst. Math. Jussieu 22 (2023), no. 2, 681–746. 10.1017/S147474802100027XSearch in Google Scholar

[5] M. Brandenburg, Tensor categorical foundations of algebraic geometry, preprint (2014), https://arxiv.org/abs/1410.1716. Search in Google Scholar

[6] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Stud. Adv. Math. 39, Cambridge University, Cambridge 1993. Search in Google Scholar

[7] B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, M. Land, K. Moi, D. Nardin, T. Nikolaus and W. Steimle, Hermitian k-theory for stable ∞-categories I, preprint (2020), https://arxiv.org/abs/2009.07223. Search in Google Scholar

[8] M. Chardin, J. Naéliton and Q. H. Tran, Cohen–Macaulayness and canonical module of residual intersections, Trans. Amer. Math. Soc. 372 (2019), no. 3, 1601–1630. 10.1090/tran/7607Search in Google Scholar

[9] M. Chasles, Construction des coniques qui satisfont à cinq conditions. Nombre des solutions dans chaque question, C. R. Acad. Sci. Paris 58 (1864), 297–308. Search in Google Scholar

[10] E. Cotterill, I. Darago and C. Han, Arithmetic inflection formulae for linear series on hyperelliptic curves, preprint (2023), https://arxiv.org/abs/2010.01714; to appear in Math. Nachr. 10.1002/mana.202100229Search in Google Scholar

[11] D. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms, 3rd ed., Undergrad. Texts Math., Springer, New York 2007. 10.1007/978-0-387-35651-8Search in Google Scholar

[12] F. Déglise, F. Jin and A. A. Khan, Fundamental classes in motivic homotopy theory, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 12, 3935–3993. 10.4171/JEMS/1094Search in Google Scholar

[13] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math. 150, Springer, New York 1995. 10.1007/978-1-4612-5350-1Search in Google Scholar

[14] D. Eisenbud and J. Harris, 3264 and all that—a second course in algebraic geometry, Cambridge University, Cambridge 2016. 10.1017/CBO9781139062046Search in Google Scholar

[15] D. Eisenbud and B. Ulrich, Duality and socle generators for residual intersections, J. reine angew. Math. 2019 (2019), no. 756, 183–226. 10.1515/crelle-2017-0045Search in Google Scholar

[16] J. Fasel, The excess intersection formula for Grothendieck–Witt groups, Manuscripta Math. 130 (2009), no. 4, 411–423. 10.1007/s00229-009-0300-5Search in Google Scholar

[17] J. Fasel, Lectures on Chow–Witt groups, Motivic homotopy theory and refined enumerative geometry, Contemp. Math. 745, American Mathematical Society, Providence (2020), 83–121. 10.1090/conm/745/15023Search in Google Scholar

[18] S. Finashin and V. Kharlamov, Segre indices and Welschinger weights as options for invariant count of real lines, Int. Math. Res. Not. IMRN 2021 (2021), no. 6, 4051–4078. 10.1093/imrn/rnz208Search in Google Scholar

[19] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb., Springer, Berlin 1984. 10.1007/978-3-662-02421-8Search in Google Scholar

[20] W. Fulton and R. MacPherson, Defining algebraic intersections, Algebraic geometry (Tromsø 1977), Lecture Notes in Math. 687, Springer, Berlin (1978), 1–30. 10.1007/BFb0062926Search in Google Scholar

[21] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/. Search in Google Scholar

[22] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Lib., John Wiley & Sons, New York 1994. 10.1002/9781118032527Search in Google Scholar

[23] A. Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. Rédigé avec la colloboration de Jean Dieudonné, Publ. Math. Inst. Hautes Étud. Sci. 32 (1967), 1–361. 10.1007/BF02732123Search in Google Scholar

[24] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer, Berlin 1966. 10.1007/BFb0080482Search in Google Scholar

[25] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, Springer 2013. Search in Google Scholar

[26] J. L. Kass and K. Wickelgren, The class of Eisenbud–Khimshiashvili–Levine is the local A 1 -Brouwer degree, Duke Math. J. 168 (2019), no. 3, 429–469. 10.1215/00127094-2018-0046Search in Google Scholar

[27] J. L. Kass and K. Wickelgren, An arithmetic count of the lines on a smooth cubic surface, Compos. Math. 157 (2021), no. 4, 677–709. 10.1112/S0010437X20007691Search in Google Scholar

[28] E. Kunz, Residues and duality for projective algebraic varieties, Univ. Lecture Ser. 47, American Mathematical Society, Providence 2008. 10.1090/ulect/047Search in Google Scholar

[29] S. Lang, Algebra, 3rd ed., Grad. Texts in Math. 211, Springer, New York 2002. 10.1007/978-1-4613-0041-0_1Search in Google Scholar

[30] M. Levine, Motivic Euler characteristics and Witt-valued characteristic classes, Nagoya Math. J. 236 (2019), 251–310. 10.1017/nmj.2019.6Search in Google Scholar

[31] M. Levine, Aspects of enumerative geometry with quadratic forms, Doc. Math. 25 (2020), 2179–2239. 10.4171/dm/797Search in Google Scholar

[32] M. Levine and A. Raksit, Motivic Gauss–Bonnet formulas, Algebra Number Theory 14 (2020), no. 7, 1801–1851. 10.2140/ant.2020.14.1801Search in Google Scholar

[33] J. Lurie, Higher topos theory, Ann. of Math. Stud. 170, Princeton University, Princeton 2009. 10.1515/9781400830558Search in Google Scholar

[34] F. Marty, Des ouverts Zariski et des morphismes lisses en géométrie relative, Ph.D. thesis, Université Toulouse IIII-Paul Sabatier, 2009, http://thesesups.ups-tlse.fr/540/1/Marty_Florian.pdf. Search in Google Scholar

[35] H. Matsumura, Commutative algebra, 2nd ed., Math. Lect. Note Ser. 56, Benjamin/Cummings, Reading 1980. Search in Google Scholar

[36] S. McKean, An arithmetic enrichment of Bézout’s theorem, Math. Ann. 379 (2021), no. 1–2, 633–660. 10.1007/s00208-020-02120-3Search in Google Scholar

[37] F. Morel, A 1 -algebraic topology over a field, Lecture Notes in Math. 2052, Springer, Heidelberg 2012. 10.1007/978-3-642-29514-0Search in Google Scholar

[38] S. Pauli, Computations in A 1 -homotopy theory. Contractibility and enumerative geometry, Ph.D. thesis, University of Oslo, 2020, https://www.duo.uio.no/handle/10852/80256. Search in Google Scholar

[39] S. Pauli, Computing A 1 -Euler numbers with Macaulay2, preprint (2020), https://arxiv.org/abs/2003.01775. Search in Google Scholar

[40] S. Pauli, Quadratic types and the dynamic Euler number of lines on a quintic threefold, Adv. Math. 405 (2022), Paper No. 108508. 10.1016/j.aim.2022.108508Search in Google Scholar

[41] C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), no. 4, 271–302. 10.1007/BF01425554Search in Google Scholar

[42] G. Scheja and U. Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. reine angew. Math. 278–279 (1975), 174–190. 10.1515/crll.1975.278-279.174Search in Google Scholar

[43] P. Srinivasan and K. Wickelgren, An arithmetic count of the lines meeting four lines in P 3 , Trans. Amer. Math. Soc. 374 (2021), no. 5, 3427–3451; with an appendix by B. Kadets, P. Srinivasan, A. A. Swaminathan, L. Taylor and D. Tseng. 10.1090/tran/8307Search in Google Scholar

[44] B. Ulrich, Artin–Nagata properties and reductions of ideals, Commutative algebra: Syzygies, multiplicities, and birational algebra, Contemp. Math. 159, American Mathematical Society, Providence (1994), 373–400. 10.1090/conm/159/01519Search in Google Scholar

[45] D. van Straten and T. Warmt, Gorenstein-duality for one-dimensional almost complete intersections—with an application to non-isolated real singularities, Math. Proc. Cambridge Philos. Soc. 158 (2015), no. 2, 249–268. 10.1017/S0305004114000504Search in Google Scholar

[46] The Stacks project authors, Stacks project, http://stacks.math.columbia.edu, 2018. Search in Google Scholar

Received: 2021-12-17
Revised: 2023-04-26
Published Online: 2023-07-25
Published in Print: 2023-09-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2023 from https://www.degruyter.com/document/doi/10.1515/crelle-2023-0041/html
Scroll to top button