Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 2, 2022

Human serum albumin in neurodegeneration

Sajjad Shojai , Seyed-Ali Haeri Rohani , Ali Akbar Moosavi-Movahedi and Mehran Habibi-Rezaei ORCID logo EMAIL logo

Abstract

Serum albumin (SA) exists in relatively high concentrations, in close contact with most cells. However, in the adult brain, except for cerebrospinal fluid (CSF), SA concentration is relatively low. It is mainly produced in the liver to serve as the main protein of the blood plasma. In the plasma, it functions as a carrier, chaperon, antioxidant, source of amino acids, osmoregulator, etc. As a carrier, it facilitates the stable presence and transport of the hydrophobic and hydrophilic molecules, including free fatty acids, steroid hormones, medicines, and metal ions. As a chaperon, SA binds to and protects other proteins. As an antioxidant, thanks to a free sulfhydryl group (–SH), albumin is responsible for most antioxidant properties of plasma. These functions qualify SA as a major player in, and a mirror of, overall health status, aging, and neurodegeneration. The low concentration of SA is associated with cognitive deterioration in the elderly and negative prognosis in multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). SA has been shown to be structurally modified in neurological conditions such as Alzheimer’s disease (AD). During blood–brain barrier damage albumin enters the brain tissue and could trigger epilepsy and neurodegeneration. SA is able to bind to the precursor agent of the AD, amyloid-beta (Aβ), preventing its toxic effects in the periphery, and is being tested for treating this disease. SA therapy may also be effective in brain rejuvenation. In the current review, we will bring forward the prominent properties and roles of SA in neurodegeneration.


Corresponding author: Mehran Habibi-Rezaei, School of Biology, College of Science, University of Tehran, Tehran, 14176-14411, Iran; and Nano-Biomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran, E-mail:

Acknowledgments

The supports of the University of Tehran, National Institute for Medical Research and Development (NIMAD) are gratefully acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that they have no competing interests.

References

Ahn, S., Byun, K., Cho, K., Kim, J.Y., Yoo, J.S., Kim, D., Paek, H., Kim, S.U., Simpson, R.J., and Lee, B. (2008). Human microglial cells synthesize albumin in brain. PLoS One 3: e2829, https://doi.org/10.1371/journal.pone.0002829.Search in Google Scholar

Algamal, M., Milojevic, J., Jafari, N., Zhang, W., and Melacini, G. (2013). Mapping the interactions between the Alzheimer’s Aβ-peptide and human serum albumin beyond domain resolution. Biophys. J. 105: 1700–1709, https://doi.org/10.1016/j.bpj.2013.08.025.Search in Google Scholar

Alonso, A., Reinz, E., Fatar, M., Hennerici, M.G., and Meairs, S. (2011). Clearance of albumin following ultrasound-induced blood-brain barrier opening is mediated by glial but not neuronal cells. Brain Res. 1411: 9–16, https://doi.org/10.1016/j.brainres.2011.07.006.Search in Google Scholar

Altunoglu, E., Guntas, G., Erdenen, F., Akkaya, E., Topac, I., Irmak, H., Derici, H., Yavuzer, H., Gelisgen, R., and Uzun, H. (2015). Ischemia-modified albumin and advanced oxidation protein products as potential biomarkers of protein oxidation in Alzheimer’s disease. Geriatr. Gerontol. Int. 15: 872–880, https://doi.org/10.1111/ggi.12361.Search in Google Scholar

Arasteh, A., Farahi, S., Habibi-Rezaei, M., and Moosavi-Movahedi, A.A. (2014). Glycated albumin: an overview of the in vitro models of an in vivo potential disease marker. J. Diabetes Metab. Disord. 13: 49–58, https://doi.org/10.1186/2251-6581-13-49.Search in Google Scholar

Avila-Martin, G., Galan-Arriero, I., Gómez-Soriano, J., and Taylor, J. (2011). Treatment of rat spinal cord injury with the neurotrophic factor albumin-oleic acid: translational application for paralysis, spasticity and pain. PLoS One 6: e26107, https://doi.org/10.1371/journal.pone.0026107.Search in Google Scholar

Aydin, O., Ellidag, H.Y., Eren, E., Kurtulus, F., Yaman, A., and Yilmaz, N. (2014). Ischemia modified albumin is an indicator of oxidative stress in multiple sclerosis. Biochem. Med. 24: 383–389, https://doi.org/10.11613/bm.2014.041.Search in Google Scholar

Baltanás, F.C., Weruaga, E., Valero, J., Recio, J.S., and Alonso, J.R. (2009). Albumin attenuates DNA damage in primary-cultured neurons. Neurosci. Lett. 450: 23–26, https://doi.org/10.1016/j.neulet.2008.10.108.Search in Google Scholar

Bar-Or, D., Lau, E., and Winkler, V. (2000). A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J. Emerg. Med. 19: 311–315, https://doi.org/10.1016/s0736-4679(00)00255-9.Search in Google Scholar

Bayarsaikhan, D., Lee, J., Oh, S., Park, H., Roshini, A., Kim, U., Song, B., Jo, S., and Lee, B. (2015). Microglial AGE-albumin is critical for neuronal death in Parkinson’s disease: a possible implication for theranostics. Int. J. Nanomed. 10: 281–292, https://doi.org/10.2147/IJN.S95077.Search in Google Scholar PubMed PubMed Central

Belinskaia, D.A., Voronina, P.A., Shmurak, V.I., Vovk, M.A., Batalova, A.A., Jenkins, R.O., and Goncharov, N.V. (2020). The universal soldier: enzymatic and non-enzymatic antioxidant functions of serum albumin. Antioxidants 9: 966, https://doi.org/10.3390/antiox9100966.Search in Google Scholar PubMed PubMed Central

Bellomo, G., Bologna, S., Cerofolini, L., Paciotti, S., Gatticchi, L., Ravera, E., Parnetti, L., Fragai, M., and Luchinat, C. (2019). Dissecting the interactions between human serum albumin and α-synuclein: new insights on the factors influencing α-synuclein aggregation in biological fluids. J. Phys. Chem. B 123: 4380–4386, https://doi.org/10.1021/acs.jpcb.9b02381.Search in Google Scholar PubMed

Bento-Abreu, A., Velasco, A., Polo-Hernandez, E., Perez-Reyes, P.L., Tabernero, A., and Medina, J.M. (2008). Megalin is a receptor for albumin in astrocytes and is required for the synthesis of the neurotrophic factor oleic acid. J. Neurochem. 106: 1149–1159, https://doi.org/10.1111/j.1471-4159.2008.05462.x.Search in Google Scholar PubMed

Biere, A.L., Ostaszewski, B., Stimson, E.R., Hyman, B.T., Maggio, J.E., and Selkoe, D.J. (1996). Amyloid β-peptide is transported on lipoproteins and albumin in human plasma. J. Biol. Chem. 271: 32916–32922, https://doi.org/10.1074/jbc.271.51.32916.Search in Google Scholar PubMed

Boada, M., Ramos-Fernandez, E., Guivernau, B., Munoz, F.J., Costa, M., Ortiz, A.M., Jorquera, J.I., Nunez, L., Torres, M., and Paez, A. (2016). Treatment of Alzheimer disease using combination therapy with plasma exchange and haemapheresis with albumin and intravenous immunoglobulin: rationale and treatment approach of the AMBAR (Alzheimer Management By Albumin Replacement) study. Neurologia 31: 473–481, https://doi.org/10.1016/j.nrleng.2014.02.009.Search in Google Scholar

Boada, M., Anaya, F., Ortiz, P., Olazaran, J., Shua-Haim, J.R., Obisesan, T.O., Hernandez, I., Munoz, J., Buendia, M., Alegret, M., et al.. (2017). Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-beta concentrations and cognition outcomes in Alzheimer’s disease patients: a multicenter, randomized, controlled clinical trial. J. Alzheimer’s Dis. 56: 129–143, https://doi.org/10.3233/JAD-160565.Search in Google Scholar PubMed PubMed Central

Boada, M., López, O.L., Olazarán, J., Núñez, L., Pfeffer, M., Paricio, M., Lorites, J., Piñol-Ripoll, G., Gámez, J.E., Anaya, F., et al.. (2020). A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR Study. Alzheimer’s Dementia 16: 1412–1425, https://doi.org/10.1002/alz.12137.Search in Google Scholar PubMed PubMed Central

Boada, M., Martínez-Lage, P., Serrano-Castro, P., Costa, M., and Páez, A. (2021). Therapeutic plasma exchange with albumin: a new approach to treat Alzheimer’s disease. Expert Rev. Neurother. 21: 843–849, https://doi.org/10.1080/14737175.2021.1960823.Search in Google Scholar PubMed

Bode, D.C., Stanyon, H.F., Hirani, T., Baker, M.D., Nield, J., and Viles, J.H. (2018). Serum albumin’s protective inhibition of amyloid-β fiber formation is suppressed by cholesterol, fatty acids and warfarin. J. Mol. Biol. 430: 919–934, https://doi.org/10.1016/j.jmb.2018.01.008.Search in Google Scholar PubMed

Bohli, N., Meilhac, O., Rondeau, P., Gue, S., Mora, L., and Abdelghani, A. (2018). A facile route to glycated albumin detection. Talanta 184: 507–512, https://doi.org/10.1016/j.talanta.2018.03.027.Search in Google Scholar PubMed

Bohrmann, B., Tjernberg, L., Kuner, P., Poli, S., Levet-trafit, B., and Nordstedt, C. (1999). Endogenous proteins controlling amyloid β-peptide polymerization. J. Biol. Chem. 274: 15990–15995, https://doi.org/10.1074/jbc.274.23.15990.Search in Google Scholar PubMed

Bourdon, E., Loreau, N., Lagrost, L., Blache, D., and Inserm, U. (2005). Differential effects of cysteine and methionine residues in the antioxidant activity of human serum albumin. Free Radic. Res. 39: 15–20, https://doi.org/10.1080/10715760400024935.Search in Google Scholar PubMed

Braganza, O., Bedner, P., Hüttmann, K., von Staden, E., Friedman, A., Seifert, G., and Steinhäuser, C. (2012). Albumin is taken up by hippocampal NG2 cells and astrocytes and decreases gap junction coupling. Epilepsia 53: 1898–1906, https://doi.org/10.1111/j.1528-1167.2012.03665.x.Search in Google Scholar PubMed PubMed Central

Brown, G.C. and Vilalta, A. (2015). How microglia kill neurons. Brain Res. 1628: 288–297, https://doi.org/10.1016/j.brainres.2015.08.031.Search in Google Scholar PubMed

Byun, K., Bayarsaikhan, E., Kim, D., Kim, C.Y., Mook-jung, I., Paek, H., Kim, S.U., Yamamoto, T., Won, M., Song, B., et al.. (2012). Induction of neuronal death by microglial AGE-albumin: implications for Alzheimer’s disease. PLoS One 7: e37917, https://doi.org/10.1371/journal.pone.0037917.Search in Google Scholar PubMed PubMed Central

Cacheaux, L.P., Ivens, S., David, Y., Lakhter, A.J., Bar-klein, G., Shapira, M., Heinemann, U., Friedman, A., and Kaufer, D. (2009). Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J. Neurosci. 29: 8927–8935, https://doi.org/10.1523/jneurosci.0430-09.2009.Search in Google Scholar

Cain, L.D., Nie, L., Hughes, M.G., Johnson, K., Echetebu, C., Xu, G., Hulsebosch, C.E., and McAdoo, D.J. (2007). Serum albumin improves recovery from spinal cord injury. J. Neurosci. Res. 85: 1558–1567, https://doi.org/10.1002/jnr.21265.Search in Google Scholar PubMed

Calvo, C.-F., Amigou, E., Tence, M., Yoshimura, T., and Glowinski, J. (2005). Albumin stimulates monocyte chemotactic protein-1 expression in rat embryonic mixed brain cells. J. Neurosci. Res. 80: 707–714, https://doi.org/10.1002/jnr.20511.Search in Google Scholar PubMed

Can, M., Varlibas, F., Guven, B., Akhan, O., and Yuksel, G.A. (2013). Ischemia modified albumin and plasma oxidative stress markers in Alzheimer’s disease. Eur. Neurol. 69: 377–380, https://doi.org/10.1159/000339006.Search in Google Scholar PubMed

Chen, Z., He, Y., Shi, B., and Yang, D. (2013). Human serum albumin from recombinant DNA technology: challenges and strategies. Biochim. Biophys. Acta 1830: 5515–5525, https://doi.org/10.1016/j.bbagen.2013.04.037.Search in Google Scholar PubMed

Chiò, A., Calvo, A., Bovio, G., Canosa, A., Bertuzzo, D., Galmozzi, F., Cugnasco, P., Clerico, M., De Mercanti, S., Bersano, E., et al.. (2014). Amyotrophic lateral sclerosis outcome measures and the role of albumin and creatinine: a population-based study. JAMA Neurol. 71: 1134–1142, https://doi.org/10.1001/jamaneurol.2014.1129.Search in Google Scholar PubMed

Costa, M., Horrillo, R., Ortiz, A.M., Perez, A., Mestre, A., Ruiz, A., Boada, M., and Grancha, S. (2018). Increased albumin oxidation in cerebrospinal fluid and plasma from Alzheimer’s disease patients. J. Alzheimer’s Dis. 63: 1395–1404, https://doi.org/10.3233/jad-180243.Search in Google Scholar PubMed PubMed Central

Coverdale, J.P.C., Khazaipoul, S., Arya, S., Stewart, A.J., and Blindauer, C.A. (2019). Crosstalk between zinc and free fatty acids in plasma. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864: 532–542, https://doi.org/10.1016/j.bbalip.2018.09.007.Search in Google Scholar PubMed PubMed Central

Czub, M.P., Venkataramany, B.S., Majorek, K.A., Handing, K.B., Porebski, P.J., Beeram, S.R., Suh, K., Woolfork, A.G., Hage, D.S., Shabalin, I.G., et al.. (2018). Testosterone meets albumin - the molecular mechanism of sex hormone transport by serum albumins. Chem. Sci. 10: 1607–1618, https://doi.org/10.1039/c8sc04397c.Search in Google Scholar PubMed PubMed Central

Deane, R., Bell, R.D., Sagare, A., and Zlokovic, B.V. (2009). Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol. Disord. - Drug Targets 8: 16–30, https://doi.org/10.2174/187152709787601867.Search in Google Scholar PubMed PubMed Central

Dendrou, C.A., Fugger, L., and Friese, M.A. (2015). Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15: 545–558, https://doi.org/10.1038/nri3871.Search in Google Scholar PubMed

Derk, J., MacLean, M., Juranek, J., and Schmidt, A.M. (2018). The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J. Alzheimer’s Dis. Park. 8: 421, https://doi.org/10.4172/2161-0460.1000421.Search in Google Scholar PubMed PubMed Central

Deshpande, T., Li, T., Herde, M.K., Becker, A., Vatter, H., Schwarz, M.K., Henneberger, C., Steinhäuser, C., and Bedner, P. (2017). Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65: 1809–1820, https://doi.org/10.1002/glia.23196.Search in Google Scholar PubMed

Dominguez-Prieto, M., Velasco, A., Vega, L., Tabernero, A., and Medina, J.M. (2017). Aberrant co-localization of synaptic proteins promoted by Alzheimer’s disease amyloid-beta peptides: protective effect of human serum albumin. J. Alzheimer’s Dis. 55: 171–182, https://doi.org/10.3233/JAD-160346.Search in Google Scholar PubMed PubMed Central

Dong, N., Xu, B., Shi, H., and Lu, Y. (2016). miR-124 regulates Amadori-glycated albumin-induced retinal microglial activation and inflammation by targeting Rac1. Investig. Ophthalmol. Vis. Sci. 57: 2522–2532, https://doi.org/10.1167/iovs.15-18224.Search in Google Scholar PubMed

Dong, N., Xu, B., and Shi, H. (2018). Long noncoding RNA MALAT1 acts as a competing endogenous RNA to regulate Amadori-glycated albumin-induced MCP-1 expression in retinal microglia by a microRNA-124-dependent mechanism. Inflamm. Res. 67: 913–925, https://doi.org/10.1007/s00011-018-1184-1.Search in Google Scholar PubMed

Elali, A. and Rivest, S. (2016). Microglia in Alzheimer’s disease: a multifaceted relationship. Brain Behav. Immun. 55: 138–150, https://doi.org/10.1016/j.bbi.2015.07.021.Search in Google Scholar PubMed

Farooqui, A.A. (2018). Ischemic and traumatic brain and spinal cord injuries. Elsevier/Academic Press, London, UK/San Diego, CA.Search in Google Scholar

Ferdousi, M., Habibi-Rezaei, M., Balalaie, S., Ramezanpour, S., Sabouni, F., Poursasan, N., Sabokdast, M., and Moosavi-Movahedi, A.A. (2016). Toxicity of serum albumin on microglia upon seeding effect of amyloid peptide. J. Biochem. 160: 325–332, https://doi.org/10.1093/jb/mvw042.Search in Google Scholar PubMed

Forman, H.J. and Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20: 689–709, https://doi.org/10.1038/s41573-021-00233-1.Search in Google Scholar PubMed PubMed Central

Freitas, P.A.C., Ehlert, L.R., and Camargo, J.L. (2017). Glycated albumin: a potential biomarker in diabetes. Arch. Endocrinol. Metab. 61: 296–304, https://doi.org/10.1590/2359-3997000000272.Search in Google Scholar PubMed

Frigerio, F., Frasca, A., Weissberg, I., Parrella, S., and Friedman, A. (2012). Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia 53: 1887–1897, https://doi.org/10.1111/j.1528-1167.2012.03666.x.Search in Google Scholar PubMed PubMed Central

Gamit, A.M., Khubchandani, A.S., Gamit, M.R., Parmar, U., Adarsh, A., and Gaadhe, P. (2017). A study of serum total protein, serum albumin and thyroid hormones in protein-energy malnutrition in children. Int. J. Med. Sci. Publ. Health 6: 409–412, https://doi.org/10.5455/ijmsph.2017.15082016633.Search in Google Scholar

Garcia-Garcia, J., Valls-Comamala, V., Guney, E., Andreu, D., Muñoz, F.J., Fernandez-Fuentes, N., and Oliva, B. (2017). iFrag: a protein–protein interface prediction server based on sequence fragments. J. Mol. Biol. 429: 382–389, https://doi.org/10.1016/j.jmb.2016.11.034.Search in Google Scholar PubMed

Ginsberg, M.D. (2008). Neuroprotection for ischemic stroke: past, present, and future. Neuropharmacology 55: 363–389, https://doi.org/10.1016/j.neuropharm.2007.12.007.Search in Google Scholar PubMed PubMed Central

Giri, R., Shen, Y., Stins, M., Du Yan, S., Schmidt, A.M., Stern, D., Kim, K.S., Zlokovic, B., and Kalra, V.K. (2000). Beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am. J. Cell Physiol. 279: C1772–C1781, https://doi.org/10.1152/ajpcell.2000.279.6.c1772.Search in Google Scholar

Gum, E.T., Swanson, R.A., Alano, C., Liu, J., Hong, S., Weinstein, P.R., and Panter, S.S. (2004). Human serum albumin and its N-terminal tetrapeptide (DAHK) block oxidant-induced neuronal death. Stroke 35: 590–595, https://doi.org/10.1161/01.str.0000110790.05859.da.Search in Google Scholar

Gurantz, D., Margiotta, J.F., Harootunian, A.T., and Dionne, V.E. (1993). Modulation by albumin of neuronal cholinergic. Mol. Pharmacol. 43: 807–812.Search in Google Scholar

Hahn, R.G. and Dull, R.O. (2021). Interstitial washdown and vascular albumin refill during fluid infusion: novel kinetic analysis from three clinical trials. Intensive Care Med. Exp. 9: 44, https://doi.org/10.1186/s40635-021-00407-6.Search in Google Scholar

Hall, B.G. (2013). Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 30: 1229–1235, https://doi.org/10.1093/molbev/mst012.Search in Google Scholar

Han, S., Park, J., and Mook-jung, I. (2016). Progress in neurobiology amyloid β-interacting partners in Alzheimer’s disease: from accomplices to possible therapeutic targets. Prog. Neurobiol. 137: 17–38, https://doi.org/10.1016/j.pneurobio.2015.12.004.Search in Google Scholar

Hassel, B., Iversen, E.G., and Fonnum, F. (1994). Neurotoxicity of albumin in vivo. Neurosci. Lett. 167: 29–32, https://doi.org/10.1016/0304-3940(94)91020-0.Search in Google Scholar

Hegen, H., Auer, M., Zeileis, A., and Deisenhammer, F. (2016). Upper reference limits for cerebrospinal fluid total protein and albumin quotient based on a large cohort of control patients: implications for increased clinical specificity. Clin. Chem. Lab. Med. 54: 285–292, https://doi.org/10.1515/cclm-2015-0253.Search in Google Scholar PubMed

Heinemann, U., Kaufer, D., and Friedman, A. (2012). Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia 60: 1251–1257, https://doi.org/10.1002/glia.22311.Search in Google Scholar PubMed PubMed Central

Henning, L., Steinhäuser, C., and Bedner, P. (2021). Initiation of experimental temporal lobe epilepsy by early astrocyte uncoupling is independent of TGFβR1/ALK5 signaling. Front. Neurol. 12: 660591, https://doi.org/10.3389/fneur.2021.660591.Search in Google Scholar PubMed PubMed Central

Hooper, C., Taylor, D.L., and Pocock, J.M. (2005). Pure albumin is a potent trigger of calcium signalling and proliferation in microglia but not macrophages or astrocytes. J. Neurochem. 92: 1363–1376, https://doi.org/10.1111/j.1471-4159.2005.02982.x.Search in Google Scholar PubMed

Hooper, C., Pinteaux-Jones, F., Fry, V.A.H., Sevastou, I.G., Baker, D., Heales, S.J., and Pocock, J.M. (2009). Differential effects of albumin on microglia and macrophages; implications for neurodegeneration following blood-brain barrier damage. J. Neurochem. 109: 694–705, https://doi.org/10.1111/j.1471-4159.2009.05953.x.Search in Google Scholar PubMed

Ibrahim, A.S., El-remessy, A.B., Matragoon, S., Zhang, W., Patel, Y., Khan, S., Al-gasyyar, M.M., El-shishtawy, M.M., Liou, G.I., Georgia, C., et al.. (2011). Retinal microglial activation and inflammation induced by Amadori-glycated albumin in a rat model of diabetes. Diabetes 60: 1122–1133, https://doi.org/10.2337/db10-1160.Search in Google Scholar PubMed PubMed Central

Kadota, E., Nonaka, K., Karasuno, M., Nishi, K., Teramura, K., and Hashimoto, S. (1997). Neurotoxicity of serum components, comparison between CA1 and striatum. Acta Neurochir. Suppl. 70: 141–143, https://doi.org/10.1007/978-3-7091-6837-0_43.Search in Google Scholar PubMed

Kakinen, A., Javed, I., Faridi, A., Davis, T.P., and Ke, P.C. (2018). Serum albumin impedes the amyloid aggregation and hemolysis of human islet amyloid polypeptide and alpha synuclein. Biochim. Biophys. Acta Biomembr. 1860: 1803–1809, https://doi.org/10.1016/j.bbamem.2018.01.015.Search in Google Scholar PubMed

Kandimalla, R., Thirumala, V., Reddy, P.H., Biophys, B., and Author, A. (2017). Is Alzheimer’s disease a type 3 diabetes? a critical appraisal. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1863: 1078–1089, https://doi.org/10.1016/j.bbadis.2016.08.018.Search in Google Scholar PubMed PubMed Central

Khazaei, M.R., Habibi-Rezaei, M., Karimzadeh, F., Moosavi-Movahedi, A.A., Sarrafnejhad, A.A., Sabouni, F., and Bakhti, M. (2008). Microglial cell death induced by glycated bovine serum albumin: nitric oxide involvement. J. Biochem. 144: 197–206, https://doi.org/10.1093/jb/mvn059.Search in Google Scholar PubMed

Kim, J.W., Byun, M.S., Lee, J.H., Yi, D., Jeon, S.Y., Sohn, B.K., Lee, J.-Y., Shin, S.A., Kim, Y.K., Kang, K.M., et al.. (2020). Serum albumin and beta-amyloid deposition in the human brain. Neurology 95: e815–e826, https://doi.org/10.1212/WNL.0000000000010005.Search in Google Scholar PubMed PubMed Central

Kim, T., Pae, C., Yoon, S., Jang, W., Lee, N.J., Kim, J., Lee, S., Lee, C., Paik, I., and Lee, C. (2006). Decreased plasma antioxidants in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatr. 21: 344–348, https://doi.org/10.1002/gps.1469.Search in Google Scholar PubMed

Kim, Y.R., Van Meer, M.P.A., Mandeville, J.B., Tejima, E., Dai, G., Topalkara, K., Qui, J., Dijkhuizen, R.M., Moskowitz, M.A., Lo, E.H., et al.. (2007). fMRI of delayed albumin treatment during stroke recovery in rats: implication for fast neuronal habituation in recovering brains. J. Cerebr. Blood Flow Metab. 27: 142–153, https://doi.org/10.1038/sj.jcbfm.9600317.Search in Google Scholar PubMed

Ko, S., Ko, H., Chu, K., and Shieh, T. (2015). The possible mechanism of advanced glycation end products (AGEs) for Alzheimer ’ s disease. PLoS One 10: e0143345, https://doi.org/10.1371/journal.pone.0143345.Search in Google Scholar PubMed PubMed Central

Koga, M., Inada, S., Nakao, T., and Kawamori, R. (2016). The glycated albumin (GA) to HbA1c ratio reflects shorter-term glycemic control than GA : analysis of patients with fulminant type 1 diabetes. J. Clin. Lab. Anal. 31: e22023, https://doi.org/10.1002/jcla.22023.Search in Google Scholar PubMed PubMed Central

Kong, Y., Wang, F., Wang, J., Liu, C., Zhou, Y., Xu, Z., Zhang, C., Sun, B., and Guan, Y. (2020). Pathological mechanisms linking diabetes mellitus and Alzheimer’s disease: the receptor for advanced glycation end products (RAGE). Front. Aging Neurosci. 12: 217, https://doi.org/10.3389/fnagi.2020.00217.Search in Google Scholar PubMed PubMed Central

Kuo, Y., Kokjohn, T.A., Kalback, W., Luehrs, D., Galasko, D.R., Chevallier, N., Koo, E.H., Emmerling, M.R., and Roher, A.E. (2000). Amyloid-β peptides interact with plasma proteins and erythrocytes: implications for their quantitation in plasma. Biochem. Biophys. Res. Commun. 268: 750–756, https://doi.org/10.1006/bbrc.2000.2222.Search in Google Scholar PubMed

Laitinen, M.H., Ngandu, T., Rovio, S., Helkala, E.-L., Uusitalo, U., Viitanen, M., Nissinen, A., Tuomilehto, J., Soininen, H., and Kivipelto, M. (2006). Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement. Geriatr. Cognit. Disord. 22: 99–107, https://doi.org/10.1159/000093478.Search in Google Scholar PubMed

Lassmann, H. and Van Horssen, J. (2016). Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim. Biophys. Acta 1862: 506–510, https://doi.org/10.1016/j.bbadis.2015.09.018.Search in Google Scholar PubMed

Leblanc, Y., Bihoreau, N., and Chevreux, G. (2018). Characterization of human serum albumin isoforms by ion exchange chromatography coupled on-line to native mass spectrometry. J. Chromatogr. B 1095: 87–93, https://doi.org/10.1016/j.jchromb.2018.07.014.Search in Google Scholar PubMed

Leeman, M., Choi, J., Hansson, S., Storm, M.U., and Nilsson, L. (2018). Proteins and antibodies in serum, plasma, and whole blood-size characterization using asymmetrical flow field-flow fractionation (AF4). Anal. Bioanal. Chem. 410: 4867–4873, https://doi.org/10.1007/s00216-018-1127-2.Search in Google Scholar PubMed PubMed Central

LeVine, S.M. (2016). Albumin and multiple sclerosis. BMC Neurol. 16: 47, https://doi.org/10.1186/s12883-016-0564-9.Search in Google Scholar PubMed PubMed Central

Li, S., Cao, Y., and Geng, F. (2017). Genome-wide identification and comparative analysis of albumin family in vertebrates. Evol. Bioinf. Online 13, 1176934317716089, https://doi.org/10.1177/1176934317716089.Search in Google Scholar PubMed PubMed Central

Lim, J.M., Kim, G., Levine, R.L., and Heart, N. (2019). Methionine in proteins: it’s not just for protein initiation anymore. Neurochem. Res. 44: 247–257, https://doi.org/10.1007/s11064-017-2460-0.Search in Google Scholar PubMed PubMed Central

Lin, S., Tagliabracci, V.S., and Chen, X. (2005). Albumin protects cultured cerebellar granule neurons against zinc neurotoxicity. Neuroreport 16: 1461–1465, https://doi.org/10.1097/01.wnr.0000176523.34594.98.Search in Google Scholar PubMed

Litus, E.A., Kazakov, A.S., Sokolov, A.S., Nemashkalova, E.L., and Galushko, E.I. (2019). The binding of monomeric amyloid β peptide to serum albumin is affected by major plasma unsaturated fatty acids. Biochem. Biophys. Res. Commun. 510: 248–253, https://doi.org/10.1016/j.bbrc.2019.01.081.Search in Google Scholar PubMed

Liu, W., Xu, G.Z., Jiang, C.H., and Tian, J. (2011). Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro. BMC Cell Biol. 12, https://doi.org/10.1186/1471-2121-12-5.Search in Google Scholar PubMed PubMed Central

Liu, Z., Liu, J., Wang, S., Liu, S., and Zhao, Y. (2016). Neuronal uptake of serum albumin is associated with neuron damage during the development of epilepsy. Exp. Ther. Med. 12: 695–701, https://doi.org/10.3892/etm.2016.3397.Search in Google Scholar PubMed PubMed Central

Liu, Z., Zhou, T., Ziegler, A.C., Dimitrion, P., and Zuo, L. (2017). Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev. 2017: 2525967, https://doi.org/10.1155/2017/2525967.Search in Google Scholar PubMed PubMed Central

Llewellyn, D.J., Langa, K.M., Friedland, R.P., and Lang, I.A. (2010). Serum albumin concentration and cognitive impairment. Curr. Alzheimer Res. 7: 91–96, https://doi.org/10.2174/156720510790274392.Search in Google Scholar PubMed PubMed Central

Loeffler, D.A. (2020). AMBAR, an encouraging Alzheimer’s trial that raises questions. Front. Neurol. 11: 459, https://doi.org/10.3389/fneur.2020.00459.Search in Google Scholar PubMed PubMed Central

London, A., Benhar, I., and Schwartz, M. (2012). The retina as a window to the brain. Nat. Rev. Neurol. 9: 44–53, https://doi.org/10.1038/nrneurol.2012.227.Search in Google Scholar PubMed

Löscher, W. and Friedman, A. (2020). Structural, molecular, and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: a cause, consequence, or both? Int. J. Mol. Sci. 21: 591.10.3390/ijms21020591Search in Google Scholar PubMed PubMed Central

Lue, L.F., Walker, D.G., Brachova, L., Beach, T.G., Rogers, J., Schmidt, A.M., Stern, D.M., and Yan, S.D. (2001). Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp. Neurol. 171: 29–45, https://doi.org/10.1006/exnr.2001.7732.Search in Google Scholar PubMed

Luo, S. and Levine, R.L. (2009). Methionine in proteins defends against oxidative stress. Faseb. J. 23: 464–472, https://doi.org/10.1096/fj.08-118414.Search in Google Scholar PubMed PubMed Central

Maes, M., Devos, N., Wauters, A., Demedts, P., Maurits, V., Neels, H., Bosmans, E., Altamura, C., Lin, A., Song, C., et al.. (1999). Inflammatory markers in younger vs elderly normal volunteers and in patients with Alzheimer’s disease. J. Psychiatr. Res. 33: 397–405, https://doi.org/10.1016/s0022-3956(99)00016-3.Search in Google Scholar

Manole, M.D., Kochanek, P.M., Foley, L.M., Hitchens, T.K., Alexander, H., Garman, R., Ma, L., Hsia, C.J.C., Ho, C., and Clark, R.S.B. (2012). Polynitroxyl albumin and albumin therapy after pediatric asphyxial cardiac arrest: effects on cerebral blood flow and neurologic outcome. J. Cerebr. Blood Flow Metab. 32: 560–569, https://doi.org/10.1038/jcbfm.2011.165.Search in Google Scholar PubMed PubMed Central

Marques, C.M.S., Nunes, E.A., Lago, L., Pedron, C.N., Manieri, T.M., Sato, R.H., Xavier, V., Junior, O., and Cerchiaro, G. (2017). Generation of advanced glycation end-products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. Mutat. Res. Genet. Toxicol. 824: 42–51, https://doi.org/10.1016/j.mrgentox.2017.10.005.Search in Google Scholar PubMed

Martin, R.H., Yeatts, S.D., Hill, M.D., Moy, C.S., Ginsberg, M.D., Palesch, Y.Y., and Investigators, A.P. 1 and 2 and N. (2016). ALIAS (albumin in acute ischemic stroke) trials: analysis of the combined data from parts 1 and 2. Stroke 47: 2355–2359, https://doi.org/10.1161/strokeaha.116.012825.Search in Google Scholar

Martins, I.J. (2015). Unhealthy diets determine benign or toxic amyloid beta states and promote brain amyloid beta aggregation. Austin J. Clin. Neurol. 2: 1–6.Search in Google Scholar

Masuda, T., Sankowski, R., Staszewski, O., and Prinz, M. (2020). Microglia heterogeneity in the single-cell era. Cell Rep. 30: 1271–1281, https://doi.org/10.1016/j.celrep.2020.01.010.Search in Google Scholar PubMed

Medeiros, M.S., Schumacher-Schuh, A., Cardoso, A.M., Bochi, G.V., Baldissarelli, J., Kegler, A., Santana, D., Chaves, C.M.M.B.S., Schetinger, M.R.C., Moresco, R.N., et al.. (2016). Iron and oxidative stress in Parkinson’s disease: an observational study of injury biomarkers. PLoS One 11: e0146129, https://doi.org/10.1371/journal.pone.0146129.Search in Google Scholar PubMed PubMed Central

Mehdipour, M., Skinner, C., Wong, N., Lieb, M., Liu, C., Etienne, J., Kato, C., Kiprov, D., Conboy, M.J., and Conboy, I.M. (2020). Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (N Y) 12: 8790–8819, https://doi.org/10.18632/aging.103418.Search in Google Scholar PubMed PubMed Central

Mehta, V., Pei, W., Yang, G., Li, S., Swamy, E., Boster, A., Schmalbrock, P., and Pitt, D. (2013). Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS One 8: e57573, https://doi.org/10.1371/journal.pone.0057573.Search in Google Scholar PubMed PubMed Central

Mendes, R.D.S., Martins, G., Oliveira, M.V., Rocha, N.N., Cruz, F.F., Antunes, M.A., Abreu, S.C., Silva, A.L., Takiya, C., Pimentel-Coelho, P.M., et al.. (2020). Iso-oncotic albumin mitigates brain and kidney injury in experimental focal ischemic stroke. Front. Neurol. 11: 1001, https://doi.org/10.3389/fneur.2020.01001.Search in Google Scholar PubMed PubMed Central

Merlot, A.M., Kalinowski, D.S., and Richardson, D.R. (2014). Unraveling the mysteries of serum albumin-more than just a serum protein. Front. Physiol. 5: 299, https://doi.org/10.3389/fphys.2014.00299.Search in Google Scholar PubMed PubMed Central

Michinaga, S., Nagase, M., Matsuyama, E., Yamanaka, D., Seno, N., Fuka, M., Yamamoto, Y., and Koyama, Y. (2014). Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ET B receptor antagonists in mice. PLoS One 9: e102009, https://doi.org/10.1371/journal.pone.0102009.Search in Google Scholar

Mikula, E., Wyslouch-Cieszynska, A., Zhukova, L., Verwilst, P., Dehaen, W., Radecki, J., and Radecka, H. (2017). Electrochemical biosensor for the detection of glycated albumin. Curr. Alzheimer Res. 14: 345–351, https://doi.org/10.2174/1567205013666161108110542.Search in Google Scholar

Milojevic, J. and Melacini, G. (2011). Stoichiometry and affinity of the human serum albumin-Alzheimer’s Aβ Peptide Interactions. Biophys. J. 100: 183–192, https://doi.org/10.1016/j.bpj.2010.11.037.Search in Google Scholar

Milojevic, J., Esposito, V., Das, R., and Melacini, G. (2007). Understanding the molecular basis for the inhibition of the Alzheimer’s Aβ-peptide oligomerization by human serum albumin using saturation transfer difference and off-resonance relaxation NMR spectroscopy. J. Am. Chem. Soc. 129: 4282–4290, https://doi.org/10.1021/ja067367+.10.1021/ja067367+Search in Google Scholar

Milojevic, J., Raditsis, A., and Melacini, G. (2009). Human serum albumin inhibits Aβ fibrillization through a “monomer-competitor” mechanism. Biophys. J. 97: 2585–2594, https://doi.org/10.1016/j.bpj.2009.08.028.Search in Google Scholar

Miranda, H.V. and Outeiro, T.F. (2010). The sour side of neurodegenerative disorders: the effects of protein glycation. J. Pathol. 221: 13–25, https://doi.org/10.1002/path.2682.Search in Google Scholar

Mittal, K., Mani, R.J., and Katare, D.P. (2016). Type 3 diabetes: cross talk between differentially regulated proteins of type 2 diabetes mellitus and Alzheimer’s disease. Sci. Rep. 6: 25589, https://doi.org/10.1038/srep25589.Search in Google Scholar

Moser, K.V. and Humpel, C. (2007). Blood-derived serum albumin contributes to neurodegeneration via astroglial stress fiber formation. Pharmacology 80: 286–292, https://doi.org/10.1159/000106593.Search in Google Scholar

Murphy, T.R., Binder, D.K., and Fiacco, T.A. (2017). Turning down the volume: astrocyte volume change in the generation and termination of epileptic seizures. Neurobiol. Dis. 104: 24–32, https://doi.org/10.1016/j.nbd.2017.04.016.Search in Google Scholar

Nadal, A., Fuentes, E., and McNaughton, P.A. (2001). Glial cell responses to lipids bound to albumin in serum and plasma. Prog. Brain Res. 132: 367–374, https://doi.org/10.1016/s0079-6123(01)32088-5.Search in Google Scholar

Nakamura, Y., Si, Q., Takaku, T., and Kataoka, K. (2000). Identification of a peptide sequence in albumin that potentiates superoxide production by microglia. J. Neurochem. 75: 2309–2315, https://doi.org/10.1046/j.1471-4159.2000.0752309.x.Search in Google Scholar

Nakashima, F., Shibata, T., Kamiya, K., Yoshitake, J., Kikuchi, R., Matsushita, T., Ishii, I., Giménez-Bastida, J.A., Schneider, C., and Uchida, K. (2018). Structural and functional insights into S-thiolation of human serum albumins. Sci. Rep. 8: 932, https://doi.org/10.1038/s41598-018-19610-9.Search in Google Scholar

Nasica-labouze, J., Nguyen, P.H., Sterpone, F., Berthoumieu, O., Buchete, N., Coté, S., De Simone, A., Doig, A.J., Garcia, A., Laio, A., et al.. (2015). Amyloid β-protein and Alzheimer’s disease: when computer simulations complement experimental studies. Chem. Rev. 115: 3518–3563, https://doi.org/10.1021/cr500638n.Search in Google Scholar

Oliveira, A.F., Cunha, D.A., Ladriere, L., Igoillo-Esteve, M., Bugliani, M., Marchetti, P., and Cnop, M. (2015). In vitro use of free fatty acids bound to albumin: a comparison of protocols. Biotechniques 58: 228–233, https://doi.org/10.2144/000114285.Search in Google Scholar

Park, H., Hong, M., Jhon, G., Lee, Y., and Suh, M. (2017). Repeated oral administration of human serum albumin protects from the cerebral ischemia in rat brain following MCAO. Exp. Neurobiol. 26: 151–157, https://doi.org/10.5607/en.2017.26.3.151.Search in Google Scholar

Peters, T. (1996). All about albumin: biochemistry, genetics and medical applications.Academic Press Limited, San Diego CA.Search in Google Scholar

Peters, T.J. (1985). Serum albumin. Adv. Protein Chem. 37: 161–245, https://doi.org/10.1016/s0065-3233(08)60065-0.Search in Google Scholar

Picón-Pagès, P., Bonet, J., García-García, J., Garcia-Buendia, J., Gutierrez, D., Valle, J., Gómez-Casuso, C.E.S., Sidelkivska, V., Alvarez, A., Perálvarez-Marín, A., et al.. (2019). Human albumin impairs amyloid β-peptide fibrillation through its C-terminus: from docking modeling to protection against neurotoxicity in Alzheimer’s disease. Comput. Struct. Biotechnol. J. 17: 963–971.10.1016/j.csbj.2019.06.017Search in Google Scholar PubMed PubMed Central

Pieniazek, A., Gwozdzinski, L., Zbrog, Z., and Gwozdzinski, K. (2018). Alterations in conformational state of albumin in plasma in chronic hemodialyzed patients. PLoS One 13: e0192268, https://doi.org/10.1371/journal.pone.0192268.Search in Google Scholar PubMed PubMed Central

Pike, C.J., Walencewicz-Wasserman, A.J., Kosmoski, J., Cribbs, D.H., Glabe, C.G., and Cotman, C.W. (1995). Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J. Neurochem. 64: 253–265, https://doi.org/10.1046/j.1471-4159.1995.64010253.x.Search in Google Scholar PubMed

Piras, S., Furfaro, A.L., Domenicotti, C., Traverso, N., Marinari, U.M., Pronzato, M.A., and Nitti, M. (2016). RAGE expression and ROS generation in neurons: differentiation versus damage. Oxid. Med. Cell. Longev. 2016: 9348651, https://doi.org/10.1155/2016/9348651.Search in Google Scholar PubMed PubMed Central

Pisani, V., Stefani, A., Pierantozzi, M., Natoli, S., Stanzione, P., Franciotta, D., and Pisani, A. (2012). Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J. Neuroinflammation 9: 188, https://doi.org/10.1186/1742-2094-9-188.Search in Google Scholar

Plantier, J.-L., Duretz, V., Devos, V., Urbain, R., and Jorieux, S. (2016). Biologicals comparison of antioxidant properties of different therapeutic albumin preparations. Biologicals 44: 226–233, https://doi.org/10.1016/j.biologicals.2016.04.002.Search in Google Scholar

Przedborski, S., Vila, M., and Jackson-Lewis, V. (2003). Neurodegeneration: what is it and where are we? J. Clin. Invest. 111: 3–10, https://doi.org/10.1172/jci200317522.Search in Google Scholar

Pyzik, M., Sand, K.M.K., Hubbard, J.J., Andersen, J.T., Sandlie, I., and Blumberg, R.S. (2019). The neonatal Fc receptor (FcRn): a misnomer? Front. Immunol. 10: 1540, https://doi.org/10.3389/fimmu.2019.01540.Search in Google Scholar

Ranaivo, H.R. and Wainwright, M.S. (2010). Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. Brain Res. 1313: 222–231, https://doi.org/10.1016/j.brainres.2009.11.063.Search in Google Scholar

Raoufinia, R., Mota, A., Keyhanvar, N., Safari, F., Shamekhi, S., and Abdolalizadeh, J. (2016). Overview of albumin and its purification methods. Adv. Pharmaceut. Bull. 6: 495–507, https://doi.org/10.15171/apb.2016.063.Search in Google Scholar

Ritchie, R.F., Palomaki, G.E., Neveux, L.M., Navolotskaia, O., Ledue, T.B., and Craig, W.Y. (1999). Reference distributions for the negative acute-phase serum proteins, albumin, transferrin and transthyretin: a practical, simple and clinically relevant approach in a large cohort. J. Clin. Lab. Anal. 13: 273–279, https://doi.org/10.1002/(sici)1098-2825(1999)13:6<273::aid-jcla4>3.0.co;2-x.10.1002/(SICI)1098-2825(1999)13:6<273::AID-JCLA4>3.0.CO;2-XSearch in Google Scholar

Rochfort, K.D. and Cummins, P.M. (2015). The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem. Soc. Trans. 43: 702–706, https://doi.org/10.1042/bst20140319.Search in Google Scholar

Rom, S., Heldt, N.A., Gajghate, S., Seliga, A., Reichenbach, N.L., and Persidsky, Y. (2020). Hyperglycemia and advanced glycation end products disrupt BBB and promote occludin and claudin-5 protein secretion on extracellular microvesicles. Sci. Rep. 10: 7274, https://doi.org/10.1038/s41598-020-64349-x.Search in Google Scholar

Rozga, M., Kloniecki, M., Jablonowska, A., Dadlez, M., and Bal, W. (2007). The binding constant for amyloid Abeta40 peptide interaction with human serum albumin. Biochem. Biophys. Res. Commun. 364: 714–718, https://doi.org/10.1016/j.bbrc.2007.10.080.Search in Google Scholar

Rub, M.A., Khan, J.M., Azum, N., and Asiri, A.M. (2017). Influence of antidepressant clomipramine hydrochloride drug on human serum albumin: spectroscopic study. J. Mol. Liq. 241: 91–98, https://doi.org/10.1016/j.molliq.2017.05.143.Search in Google Scholar

Salar, S., Lapilover, E., Müller, J., Hollnagel, J., Lippmann, K., Friedman, A., and Heinemann, U. (2016). Synaptic plasticity in area CA1 of rat hippocampal slices following intraventricular application of albumin. Neurobiol. Dis. 91: 155–165, https://doi.org/10.1016/j.nbd.2016.03.008.Search in Google Scholar

Sharma, A., Weber, D., Raupbach, J., Dakal, T.C., Fließbach, K., Ramirez, A., Grune, T., and Wüllner, U. (2020). Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson’s and Alzheimer’s disease. Redox Biol. 34: 101546, https://doi.org/10.1016/j.redox.2020.101546.Search in Google Scholar

Shuvaev, V.V., Laffont, I., Serot, J., and Fujii, J. (2001). Increased protein glycation in cerebrospinal fluid of Alzheimer’s disease. Neurobiol. Aging 22: 397–402, https://doi.org/10.1016/s0197-4580(00)00253-0.Search in Google Scholar

Si, Q., Nakamura, Y., and Kataoka, K. (1997). Albumin enhances superoxide production in cultured microglia. Glia 21: 413–418, https://doi.org/10.1002/(sici)1098-1136(199712)21:4<413::aid-glia9>3.0.co;2-3.10.1002/(SICI)1098-1136(199712)21:4<413::AID-GLIA9>3.0.CO;2-3Search in Google Scholar

Si, Q., Nakamura, Y., and Kataoka, K. (2000). A serum factor enhances production of nitric oxide and tumor necrosis factor-alpha from cultured microglia. Exp. Neurol. 162: 89–97, https://doi.org/10.1006/exnr.2000.7334.Search in Google Scholar

Siotto, M. and Squitti, R. (2018). Copper imbalance in Alzheimer’s disease: overview of the exchangeable copper component in plasma and the intriguing role albumin plays. Coord. Chem. Rev. 371: 86–95, https://doi.org/10.1016/j.ccr.2018.05.020.Search in Google Scholar

Sirangelo, I. and Iannuzzi, C. (2021). Understanding the role of protein glycation in the amyloid aggregation process. Int. J. Mol. Sci. 22: 6609, https://doi.org/10.3390/ijms22126609.Search in Google Scholar

Skillbäck, T., Delsing, L., Synnergren, J., Mattsson, N., Janelidze, S., Nägga, K., Kilander, L., Hicks, R., Wimo, A., Winblad, B., et al.. (2017). Neurobiology of aging CSF/serum albumin ratio in dementias: a cross-sectional study on 1861 patients. Neurobiol. Aging 59: 1–9, https://doi.org/10.1016/j.neurobiolaging.2017.06.028.Search in Google Scholar

Sokrab, T.O. and Johansson, B.B. (1989). Endogenous serum albumin content in brain after short-lasting epileptic seizures. Brain Res. 489: 231–236, https://doi.org/10.1016/0006-8993(89)90855-x.Search in Google Scholar

Solomon, A., Kåreholt, I., and Ngandu, T. (2007). Serum cholesterol changes after midlife and late-life cognition Twenty-one-year follow-up study. Neeurology 68: 751–756, https://doi.org/10.1212/01.wnl.0000256368.57375.b7.Search in Google Scholar PubMed

Stanyon, H.F. and Viles, J.H. (2012). Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium: implications for Alzheimer disease. J. Biol. Chem. 287: 28163–28168, https://doi.org/10.1074/jbc.c112.360800.Search in Google Scholar

Stolzing, A., Widmer, R., Jung, T., Voss, P., and Grune, T. (2006). Degradation of glycated bovine serum albumin in microglial cells. Free Radic. Biol. Med. 40: 1017–1027, https://doi.org/10.1016/j.freeradbiomed.2005.10.061.Search in Google Scholar PubMed

Storck, S.E. and Pietrzik, C.U. (2017). Endothelial LRP1–a potential target for the treatment of Alzheimer’s disease. Pharm. Res. 34: 2637–2651, https://doi.org/10.1007/s11095-017-2267-3.Search in Google Scholar PubMed

Sweeney, M.D., Sagare, A.P., and Zlokovic, B.V. (2018). Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14: 133–150, https://doi.org/10.1038/nrneurol.2017.188.Search in Google Scholar PubMed PubMed Central

Tabernero, A., Granda, B.., Medina, A., Sa, L.I., Lavado, E., and Medina, M. (2002a). Albumin promotes neuronal survival by increasing the synthesis and release of glutamate. J. Neurochem. 81: 881–891, https://doi.org/10.1046/j.1471-4159.2002.00843.x.Search in Google Scholar PubMed

Tabernero, A., Velasco, A., Lavado, E.M., and Medina, M. (2002b). Transcytosis of albumin in astrocytes activates the sterol regulatory element-binding protein-1 , which promotes the synthesis of the neurotrophic factor oleic acid. J. Biol. Chem. 277: 4240–4246, https://doi.org/10.1074/jbc.m108760200.Search in Google Scholar PubMed

Tan, Y.-L., Yuan, Y., and Tian, L. (2020). Microglial regional heterogeneity and its role in the brain. Mol. Psychiatr. 25: 351–367, https://doi.org/10.1038/s41380-019-0609-8.Search in Google Scholar PubMed PubMed Central

Ueno, S.-I., Hatano, T., Okuzumi, A., Saiki, S., Oji, Y., Mori, A., Koinuma, T., Fujimaki, M., Takeshige-Amano, H., Kondo, A., et al.. (2020). Nonmercaptalbumin as an oxidative stress marker in Parkinson’s and PARK2 disease. Ann. Clin. Transl. Neurol. 7: 307–317, https://doi.org/10.1002/acn3.50990.Search in Google Scholar PubMed PubMed Central

Vicario, C., Tabernero, A., and Medina, J.M. (1993). Regulation of lactate metabolism by albumin in rat neurons and astrocytes from primary culture. Pediatr. Res. 34: 709–715, https://doi.org/10.1203/00006450-199312000-00002.Search in Google Scholar PubMed

Wang, C., Cheng, F., Xu, L., and Jia, L. (2016). HSA targets multiple Aβ42 species and inhibits the seeding-mediated aggregation and cytotoxicity of Aβ42 aggregates Conggang. RSC Adv. 6: 71165–71175, https://doi.org/10.1039/c6ra14590f.Search in Google Scholar

Weissberg, I., Wood, L., Kamintsky, L., Vazquez, O., Milikovsky, D.Z., Alexander, A., Oppenheim, H., Ardizzone, C., Becker, A., Frigerio, F., et al.. (2015). Albumin induces excitatory synaptogenesis through astrocytic TGFβ/ALK5 signaling in a model of acquired epilepsy following blood- brain barrier dysfunction. Neurobiol. Dis. 78: 115–125, https://doi.org/10.1016/j.nbd.2015.02.029.Search in Google Scholar PubMed PubMed Central

Welsh, K.J., Kirkman, M.S., and Sacks, D.B. (2016). Role of glycated proteins in the diagnosis and management of diabetes: research gaps and future directions. Diabetes Care 39: 1299–1306, https://doi.org/10.2337/dc15-2727.Search in Google Scholar PubMed PubMed Central

Whitmer, R.A., Sidney, S., Selby, J., Johnston, S.C., and Yaffe, K. (2005). Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64: 277–281, https://doi.org/10.1212/01.wnl.0000149519.47454.f2.Search in Google Scholar PubMed

Xie, Y., Guo, H., Wang, L., Xu, L., Zhang, X., Yu, L., Liu, Q., Li, Y., Zhao, N., Zhao, N., et al.. (2017). Human albumin attenuates excessive innate immunity via inhibition of microglial Mincle/Syk signaling in subarachnoid hemorrhage. Brain Behav. Immun. 60: 346–360, https://doi.org/10.1016/j.bbi.2016.11.004.Search in Google Scholar PubMed

Xue, H., Yang, Z., Wang, L., Jiang, Y., Li, J., Wu, M., Wang, G., Zhang, Y., and Zhang, M. (2021). Factors influencing the degree of disability in patients with multiple sclerosis. Front. Neurol. 12: 1700, https://doi.org/10.3389/fneur.2021.714631.Search in Google Scholar PubMed PubMed Central

Yang, F., Zhang, Y., and Liang, H. (2014). Interactive association of drugs binding to human serum albumin. Int J Mol Sci. 15: 3580–3595, https://doi.org/10.3390/ijms15033580.Search in Google Scholar PubMed PubMed Central

Zhang, S.-Y., Gui, L.-N., Liu, Y.-Y., Shi, S., and Cheng, Y. (2020). Oxidative stress marker aberrations in multiple sclerosis: a meta-analysis study. Front. Neurosci. 14: 823, https://doi.org/10.3389/fnins.2020.00823.Search in Google Scholar PubMed PubMed Central

Zhang, W., Wang, T., Pei, Z., Miller, D.S., Wu, X., Block, M.L., Wilson, B., Zhang, W., Zhou, Y., Hong, J.-S., et al.. (2005). Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. Faseb. J. 19: 533–542, https://doi.org/10.1096/fj.04-2751com.Search in Google Scholar PubMed

Zhao, T., Xia, Y., Li, L., Li, J., Zhu, G., Chen, S., Feng, H., and Lin, J. (2009). Bovine serum albumin promotes IL-1beta and TNF-alpha secretion by N9 microglial cells. Neurol. Sci. 30: 379–383, https://doi.org/10.1007/s10072-009-0123-x.Search in Google Scholar PubMed

Zhao, X., Valantas, J.A., Vyas, S., and Duffy, L.K. (1993). Comparative toxicity of amyloid β-peptide in neuroblastoma cell lines: effects of albumin and physalaemin. Comp. Biochem. Physiol. 106C: 165–170, https://doi.org/10.1016/0742-8413(93)90268-p.Search in Google Scholar

Zinellu, E., Fois, A.G., Sotgiu, E., Mellino, S., Mangoni, A.A., Carru, C., Zinellu, A., and Pirina, P. (2021). Serum albumin concentrations in stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. J. Clin. Med. 10: 269, https://doi.org/10.3390/jcm10020269.Search in Google Scholar PubMed PubMed Central

Received: 2021-12-06
Accepted: 2022-03-02
Published Online: 2022-04-02
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/revneuro-2021-0165/html
Scroll Up Arrow