Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 24, 2022

Anomalous skin effects and energy transfer of R-L waves in relativistic partially degenerate plasma

  • Syeda Noureen ORCID logo EMAIL logo

Abstract

On utilizing the kinetic model for transverse permittivity in a weakly magnetized electron plasma, the two particular phenomena of wave-particle interaction i.e., anomalous skin depth and energy transfer are examined in circularly polarized R- and L-waves within relativistic Fermi–Dirac distributed plasmas. Further, the non-trivial influential roles by some salient parameters i.e., relativistic thermal T m 0 c 2 > 0 , γ (from bulk flow such that γ > 1), degeneracy (due to μ T ) and weak ambient magnetic field (B 0), on above mentioned wave phenomena, are also analyzed. The derived results, in the form of polylog function, delineate the inverse relation between spatial damping and energy flux transportation regarding the variation in above mentioned dominant parameters. It is noticed that the relativistic thermal parameter serve as a penetration depth elevator for R- and L-waves and so they transfer energy slowly, whereas the degeneracy and relativistic γ parameters submerse the depth and cause upraise in energy transfer. Moreover, the increase in weak ambient magnetic field reduces the penetration depth of R-wave that delivers its energy rapidly, whereas it enlarges the penetration depth of L-wave which causes slow delivery of its energy. The results discussed (both analytically and graphically) are justifiably confirmed with previous illustrative reports. Applicability of the analysis relevant in partially degenerate regions both in space (e.g., in white dwarfs and young brown dwarf) and laboratory (e.g., in laser plasma interaction, liquid metals, inertial confinement fusion (ICF) and Fermi gas of metals) plasmas.


Corresponding author: Syeda Noureen, Department of Physics, Government College University, Katchery Road, Lahore, 54000, Pakistan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] H. London, “The high-frequency resistance of superconducting tin,” Proc. R. Soc. A., vol. 176, 1940, Art no. 522.10.1098/rspa.1940.0105Search in Google Scholar

[2] T. H. Khokhar, M. F. Bashir, and G. Murtaza, “Anomalous skin effects in anisotropic kappa distributed plasmas,” Phys. Plasmas, vol. 24, 2017, Art no. 072105. https://doi.org/10.1063/1.4989730.Search in Google Scholar

[3] U. R. Christensen, V. Holzwarth and A. Reiners, “Energy flux determines magnetic field strength of planets and stars,” Nature, vol. 457, pp. 167–169, 2009. https://doi.org/10.1038/nature07626.Search in Google Scholar PubMed

[4] C. R. Lynch, T. Murphy, E. Lenc, and D. L. Kaplan, “The detectability of radio emission from exoplanets,” arXiv:1804.11006v1 [astro-ph.EP], 2018.10.1093/mnras/sty1138Search in Google Scholar

[5] M. M. Kao, G. Hallinan, J. S. Pineda et al.., “Auroral radio emission from late L and T dwarfs: a new constraint on dynamo theory in the substellar regime,” Astrophys. J., vol. 818, p. 24, 2016. https://doi.org/10.3847/0004-637x/818/1/24.Search in Google Scholar

[6] D. A. Gurnett, A. M. Persoon, R. F. Randall et al.., “The polar plasma wave instrument,” Space Sci. Rev., vol. 71, pp. 597–622, 1995. https://doi.org/10.1007/bf00751343.Search in Google Scholar

[7] D. A. Gurnett, “The origins of space radio and plasma wave research at the University of Iowa,” J. Geophys. Res.: Space Physics, vol. 125, 2020, Art no. e2019JA027324. https://doi.org/10.1029/2019ja027324.Search in Google Scholar

[8] K. N. Paracha, A. D. Butt, A. S. Alghamdi, S. A. Babale, and P. J. Soh, “Liquid metal antennas: materials, fabrication and applications,” Sensors, vol. 20, p. 177, 2020. https://doi.org/10.3390/s20010177.Search in Google Scholar PubMed PubMed Central

[9] G. Abbas, M. F. Bashir, and G. Murtaza, “Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves,” Phys. Plasmas, vol. 18, 2011, Art no. 102115. https://doi.org/10.1063/1.3652694.Search in Google Scholar

[10] G. Abbas, M. Sarfraz, and H. A. Shah, “Anomalous skin effects in a weakly magnetized degenerate electron plasma,” Phys. Plasmas, vol. 21, 2014, Art no. 092108. https://doi.org/10.1063/1.4894698.Search in Google Scholar

[11] H. Farooq, M. Sarfraz, Z. Iqbal, G. Abbas and H. A. Shah, “Parallel propagating modes and anomalous spatial damping in the ultra-relativistic electron plasma with arbitrary degeneracy,” Chin. Phys. B, vol. 26, 2017, Art no. 110301. https://doi.org/10.1088/1674-1056/26/11/110301.Search in Google Scholar

[12] G. Ferrante, M. Zarcone, and S. A. Uryupin, “Collisionless absorption in an overdense plasma with anisotropic electron distribution function,” Eur. Phys. J. D, vol. 19, pp. 349–353, 2002. https://doi.org/10.1140/epjd/e20020094.Search in Google Scholar

[13] G. Ferrante, M. Zarcone, and S. A. Uryupin, “Anomalous transmission of an ultrashort ionizing laser pulse through a thin foil,” Phys. Rev. Lett., vol. 91, 2003, Art no. 085005. https://doi.org/10.1103/PhysRevLett.91.085005.Search in Google Scholar PubMed

[14] I. Kaganovich, E. Startsev, and G. Shvets, “Anomalous skin effect for anisotropic electron velocity distribution function,” Phys. Plasmas, vol. 11, 2004, Art no. 3328. https://doi.org/10.1063/1.1723461.Search in Google Scholar

[15] I. D. Kaganovich, O. V. Polomarov, and C. E. Theodosiou, “Revisiting the anomalous RF field penetration into a warm plasma,” IEEE Trans. Plasma Sci., vol. 34, no. 3, pp. 696–717, 2006. https://doi.org/10.1109/tps.2006.873253.Search in Google Scholar

[16] T. H. Khokhar, I. A. Khan, H. A. Shah and G. Murtaza, “Energy transport of circularly polarized waves in bi-kappa distributed plasmas,” Eur. Phys. J. D, vol. 74, 2020, Art no. 95. https://doi.org/10.1140/epjd/e2020-100473-3.Search in Google Scholar

[17] S. Noureen, G. Abbas, and H. Farooq, “On the high frequency perpendicular propagating waves in ultra-relativistic fully degenerate electron plasma,” Phys. Plasmas, vol. 24, 2017, Art no. 092103. https://doi.org/10.1063/1.4986021.Search in Google Scholar

[18] S. Noureen, G. Abbas, and M. Sarfraz, “On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma Phys. Plasmas vol. 25, 2018, Art no. 012123. https://doi.org/10.1063/1.5010745.Search in Google Scholar

[19] S. Noureen, G. Abbas, M. Sarfraz, and M. Ali, “On the dispersion characteristics of relativistic obliquely propagating Bernstein wave in a degenerate electron plasma,” AIP Adv., vol. 8, 2018, Art no. 105205. https://doi.org/10.1063/1.5037434.Search in Google Scholar

[20] S. Noureen, “Propagation characteristics of weakly magnetized electromagnetic modes in a relativistic partially degenerate electron plasma,” Indian J. Phys., 2021. https://doi.org/10.1007/s12648-021-02046-9.Search in Google Scholar

[21] S. Noureen, “Impact of partially thermal electrons on the propagation characteristics of extraordinary mode in relativistic regime,” Z. Naturforsch., vol. 76, pp. 1147–1157, 2021. https://doi.org/10.1515/zna-2021-0166.Search in Google Scholar

[22] D. Shaikh and P. K. Shukla, “Fluid turbulence in quantum plasmas,” Phys. Rev. Lett., vol. 99, 2007, Art no. 125002. https://doi.org/10.1103/physrevlett.99.125002.Search in Google Scholar PubMed

[23] P. K. Shukla, “A new spin in quantum plasmas,” Nat. Phys., vol. 5, pp. 92–93, 2009. https://doi.org/10.1038/nphys1194.Search in Google Scholar

[24] J. J. Kelly, “Statistical mechanics of ideal fermi systems,” 1996. Available at: https://en.wikipedia.org/wiki/Fermi-gas.Search in Google Scholar

[25] S. Rightley, and D. Uzdensky, “Landau damping of electrostatic waves in arbitrarily degenerate quantum plasmas,” arXiv:1506.05494 [physics.plasm-ph], 2018.10.1063/1.4943870Search in Google Scholar

[26] P. Phillips, Advanced Solid State Physics, Cambridge, Perseus Books, 2008, p. 224.10.1017/CBO9781139031066Search in Google Scholar

[27] S. Auddy, S. Basu, and S. R. Valluri, “Analytic models of Brown dwarfs and substellar mass limit,” Adv. Astron., vol. 2016, 2016, Art no. 5743272. https://doi.org/10.1155/2016/5743272.Search in Google Scholar

[28] A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electro-Dynamics, vol. 9, Berlin, Heidelberg, Springer-Verlag, 1984, p. 106.10.1007/978-3-642-69247-5Search in Google Scholar

[29] G. Strang and E. “Jed” Herman, Calculus Volume 3, vol. 3, Houston, Texas, OpenStax, 2016. Available at: https://openstax.org/books/calculus-volume-3/pages/2-7-cylindrical-and-spherical-coordinates.Search in Google Scholar

[30] H. Hietala, N. Partamies, T. V. Laitinen et al.., “Supermagnetosonic subsolar magnetosheath jets and their effects: from the solar wind to the ionospheric convection,” Ann. Geophys., vol. 30, pp. 33–48, 2012. https://doi.org/10.5194/angeo-30-33-2012.Search in Google Scholar

[31] S. Dasgupta and P. K. Karmakar, “Relativistic ion-acoustic waves in electrospherically confined gyromagnetoactive quantum plasmas,” Chin. J. Phys., 2021. https://doi.org/10.1016/j.cjph.2021.12.005.Search in Google Scholar

[32] P. Das and P. Kumar Karmakara, “Dynamics of flow-induced instability in gyrogravitating complex viscoelastic quantum fluids,” AIP Adv., vol. 25, nos 1–8, p. 082902, 2018. https://doi.org/10.1063/1.5037338.Search in Google Scholar

[33] P. K. Karmakara and H. P. Goutam, “Electrostatic streaming instability modes in complex viscoelastic quantum plasmas,” Phys. Plasmas, vol. 23, nos 1-14, p. 112121, 2016. https://doi.org/10.1063/1.4967855.Search in Google Scholar

[34] S. Dasgupta and P. K. Karmakar, “Propagatory dynamics of nucleus-acoustic waves excited in gyrogravitating degenerate quantum plasmas electrostatically confined in curved geometry,” Sci. Rep., vol. 11, nos. 1–12, p. 19126, 2021. https://doi.org/10.1038/s41598-021-98543-2.Search in Google Scholar PubMed PubMed Central

Received: 2021-10-24
Revised: 2022-01-04
Accepted: 2022-01-06
Published Online: 2022-01-24
Published in Print: 2022-06-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2021-0314/html
Scroll to top button